Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Res ; 118(15): 3126-3139, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34971360

RESUMO

AIMS: Obesity, diabetes, and metabolic syndromes are risk factors of atrial fibrillation (AF). We tested the hypothesis that metabolic disorders have a direct impact on the atria favouring the formation of the substrate of AF. METHODS AND RESULTS: Untargeted metabolomic and lipidomic analysis was used to investigate the consequences of a prolonged high-fat diet (HFD) on mouse atria. Atrial properties were characterized by measuring mitochondria respiration in saponin-permeabilized trabeculae, by recording action potential (AP) with glass microelectrodes in trabeculae and ionic currents in myocytes using the perforated configuration of patch clamp technique and by several immuno-histological and biochemical approaches. After 16 weeks of HFD, obesogenic mice showed a vulnerability to AF. The atrial myocardium acquired an adipogenic and inflammatory phenotypes. Metabolomic and lipidomic analysis revealed a profound transformation of atrial energy metabolism with a predominance of long-chain lipid accumulation and beta-oxidation activation in the obese mice. Mitochondria respiration showed an increased use of palmitoyl-CoA as energy substrate. APs were short duration and sensitive to the K-ATP-dependent channel inhibitor, whereas K-ATP current was enhanced in isolated atrial myocytes of obese mouse. CONCLUSION: HFD transforms energy metabolism, causes fat accumulation, and induces electrical remodelling of the atrial myocardium of mice that become vulnerable to AF.


Assuntos
Fibrilação Atrial , Dieta Hiperlipídica , Camundongos , Animais , Fibrilação Atrial/etiologia , Metabolômica , Metaboloma , Trifosfato de Adenosina
2.
Front Physiol ; 12: 661413, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122134

RESUMO

Loss-of-function mutations in the cardiac Na+ channel α-subunit Nav1.5, encoded by SCN5A, cause Brugada syndrome (BrS), a hereditary disease characterized by sudden cardiac death due to ventricular fibrillation. We previously evidenced in vitro the dominant-negative effect of the BrS Nav1.5-R104W variant, inducing retention of wild-type (WT) channels and leading to a drastic reduction of the resulting Na+ current (I Na ). To explore this dominant-negative effect in vivo, we created a murine model using adeno-associated viruses (AAVs). METHODS: Due to the large size of SCN5A, a dual AAV vector strategy was used combining viral DNA recombination and trans-splicing. Mice were injected with two AAV serotypes capsid 9: one packaging the cardiac specific troponin-T promoter, the 5' half of hSCN5A cDNA, a splicing donor site and a recombinogenic sequence; and another packaging the complementary recombinogenic sequence, a splicing acceptor site, the 3' half of hSCN5A cDNA fused to the gfp gene sequence, and the SV40 polyA signal. Eight weeks after AAV systemic injection in wild-type (WT) mice, echocardiography and ECG were recorded and mice were sacrificed. The full-length hSCN5A-gfp expression was assessed by western blot and immunohistochemistry in transduced heart tissues and the Na+ current was recorded by the patch-clamp technique in isolated adult GFP-expressing heart cells. RESULTS: Almost 75% of the cardiomyocytes were transduced in hearts of mice injected with hNav1.5 and ∼30% in hNav1.5-R104W overexpressing tissues. In ventricular mice cardiomyocytes expressing R104W mutant channels, the endogenous I Na was significantly decreased. Moreover, overexpression of R104W channels in normal hearts led to a decrease of total Nav1.5 expression. The R104W mutant also induced a slight dilatation of mice left ventricles and a prolongation of RR interval and P-wave duration in transduced mice. Altogether, our results demonstrated an in vivo dominant-negative effect of defective R104W channels on endogenous ones. CONCLUSION: Using a trans-splicing and viral DNA recombination strategy to overexpress the Na+ channel in mouse hearts allowed us to demonstrate in vivo the dominant-negative effect of a BrS variant identified in the N-terminus of Nav1.5.

3.
J Exp Med ; 217(8)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32484501

RESUMO

Excessive excitation is hypothesized to cause motoneuron (MN) degeneration in amyotrophic lateral sclerosis (ALS), but actual proof of hyperexcitation in vivo is missing, and trials based on this concept have failed. We demonstrate, by in vivo single-MN electrophysiology, that, contrary to expectations, excitatory responses evoked by sensory and brainstem inputs are reduced in MNs of presymptomatic mutSOD1 mice. This impairment correlates with disrupted postsynaptic clustering of Homer1b, Shank, and AMPAR subunits. Synaptic restoration can be achieved by activation of the cAMP/PKA pathway, by either intracellular injection of cAMP or DREADD-Gs stimulation. Furthermore, we reveal, through independent control of signaling and excitability allowed by multiplexed DREADD/PSAM chemogenetics, that PKA-induced restoration of synapses triggers an excitation-dependent decrease in misfolded SOD1 burden and autophagy overload. In turn, increased MN excitability contributes to restoring synaptic structures. Thus, the decrease of excitation to MN is an early but reversible event in ALS. Failure of the postsynaptic site, rather than hyperexcitation, drives disease pathobiochemistry.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Neurônios Motores/enzimologia , Neuroproteção , Transdução de Sinais , Sinapses/enzimologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Proteínas Quinases Dependentes de AMP Cíclico/genética , Humanos , Camundongos , Camundongos Transgênicos , Neurônios Motores/patologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Sinapses/genética , Sinapses/patologia
4.
J Mol Cell Cardiol ; 144: 127-139, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32445844

RESUMO

Ion channel trafficking powerfully influences cardiac electrical activity as it regulates the number of available channels at the plasma membrane. Studies have largely focused on identifying the molecular determinants of the trafficking of the atria-specific KV1.5 channel, the molecular basis of the ultra-rapid delayed rectifier current IKur. Besides, regulated KV1.5 channel recycling upon changes in homeostatic state and mechanical constraints in native cardiomyocytes has been well documented. Here, using cutting-edge imaging in live myocytes, we investigated the dynamics of this channel in the plasma membrane. We demonstrate that the clathrin pathway is a major regulator of the functional expression of KV1.5 channels in atrial myocytes, with the microtubule network as the prominent organizer of KV1.5 transport within the membrane. Both clathrin blockade and microtubule disruption result in channel clusterization with reduced membrane mobility and internalization, whereas disassembly of the actin cytoskeleton does not. Mobile KV1.5 channels are associated with the microtubule plus-end tracking protein EB1 whereas static KV1.5 clusters are associated with stable acetylated microtubules. In human biopsies from patients in atrial fibrillation associated with atrial remodeling, drastic modifications in the trafficking balance occurs together with alteration in microtubule polymerization state resulting in modest reduced endocytosis and increased recycling. Consequently, hallmark of atrial KV1.5 dynamics within the membrane is clathrin- and microtubule- dependent. During atrial remodeling, predominance of anterograde trafficking activity over retrograde trafficking could result in accumulation ok KV1.5 channels in the plasma membrane.


Assuntos
Clatrina/metabolismo , Microtúbulos/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Multimerização Proteica , Animais , Fibrilação Atrial/etiologia , Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Remodelamento Atrial/genética , Clatrina/química , Vesículas Revestidas por Clatrina , Citoesqueleto/química , Citoesqueleto/metabolismo , Fenômenos Eletrofisiológicos , Átrios do Coração/metabolismo , Humanos , Canal de Potássio Kv1.5/genética , Canal de Potássio Kv1.5/metabolismo , Microtúbulos/química , Microtúbulos/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Ratos , Sarcolema/metabolismo , Transdução de Sinais
5.
Hum Mutat ; 41(4): 850-859, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31930659

RESUMO

Recently, four SCN5A mutations have been associated with Multifocal Ectopic Purkinje-related Premature Contractions (MEPPC), a rare cardiac syndrome combining polymorphic ventricular arrhythmia with dilated cardiomyopathy (DCM). Here, we identified a novel heterozygous mutation in SCN5A (c.611C>A, pAla204Glu) in a young woman presenting with polymorphic premature ventricular contractions (PVCs) and DCM. After failure of antiarrhythmic drugs and an attempt of radiofrequency catheter ablation showing three exit-sites of PVCs, all with presystolic Purkinje potentials, a treatment by hydroquinidine was tried, leading to an immediate and spectacular disappearance of all PVCs and normalization of cardiac function. Electrophysiological studies showed that Nav 1.5-A204E mutant channels exhibited a significant leftward shift of 8 mV of the activation curve, leading to a larger hyperpolarized window current when compared to wild-type. Action potential modeling using Purkinje fiber and ventricular cell models predicted an arrhythmogenic effect predominant in Purkinje fibers for the A204E mutation. Comparison with other MEPPC-associated Nav 1.5 mutations revealed a common electrophysiological pattern of abnormal voltage-dependence of activation leading to a larger hyperpolarized window current as a shared biophysical mechanism of this syndrome. These features of the mutant sodium channels are likely to be responsible for the hyperexcitability of the fascicular-Purkinje system observed in patients with MEPPC.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Ramos Subendocárdicos/metabolismo , Ramos Subendocárdicos/fisiopatologia , Complexos Ventriculares Prematuros/diagnóstico , Complexos Ventriculares Prematuros/etiologia , Adolescente , Alelos , Sequência de Bases , Análise Mutacional de DNA , Eletrocardiografia , Feminino , Mutação com Ganho de Função , Estudos de Associação Genética/métodos , Testes Genéticos , Genótipo , Humanos , Imageamento por Ressonância Magnética , Canal de Sódio Disparado por Voltagem NAV1.5 , Fenótipo , Complexos Ventriculares Prematuros/tratamento farmacológico
6.
Heart Rhythm ; 17(5 Pt A): 786-794, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31904424

RESUMO

BACKGROUND: Membrane-associated guanylate kinase proteins function as adaptor proteins to mediate the recruitment and scaffolding of ion channels in the plasma membrane in various cell types. In the heart, the protein calcium/calmodulin-dependent serine protein kinase (CASK) negatively regulates the main cardiac sodium channel NaV1.5, which carries the sodium current (INa) by preventing its anterograde trafficking. CASK is also a new member of the dystrophin-glycoprotein complex and, like syntrophin, binds to the C-terminal domain of the channel. OBJECTIVE: The purpose of this study was to unravel the mechanisms of CASK-mediated negative INa regulation and interaction with the dystrophin-glycoprotein complex in cardiac myocytes. METHODS: CASK adenoviral truncated constructs with sequential single functional domain deletions were designed for overexpression in cardiac myocytes: CASKΔCAMKII, CASKΔL27A, CASKΔL27B, CASKΔPDZ, CASKΔSH3, CASKΔHOOK, and CASKΔGUK. A combination of whole-cell patch-clamp recording, total internal reflection fluorescence microscopy, and biochemistry experiments was conducted in cardiac myocytes to study the functional consequences of domain deletions. RESULTS: We show that both L27B and GUK domains are required for the negative regulatory effect of CASK on INa and NaV1.5 surface expression and that the HOOK domain is essential for interaction with the cell adhesion dystrophin-glycoprotein complex. CONCLUSION: This study demonstrates that the multimodular structure of CASK confers an ability to simultaneously interact with several targets within cardiomyocytes. Through its L27B, GUK, and HOOK domains, CASK potentially provides the ability to control channel delivery at adhesion points in cardiomyocytes.


Assuntos
Cálcio , Calmodulina , Cálcio/metabolismo , Calmodulina/metabolismo , Adesão Celular , Distrofina/metabolismo , Adesões Focais/metabolismo , Glicoproteínas/metabolismo , Guanilato Quinases/química , Guanilato Quinases/metabolismo , Proteínas Quinases/metabolismo , Serina , Canais de Sódio/metabolismo
7.
Orphanet J Rare Dis ; 9: 124, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25079250

RESUMO

BACKGROUND: Fragile X Syndrome (FXS) is the most common form of inherited intellectual disability and is also associated with autism spectrum disorders. Previous studies implicated BKCa channels in the neuropathogenesis of FXS, but the main question was whether pharmacological BKCa stimulation would be able to rescue FXS neurobehavioral phenotypes. METHODS AND RESULTS: We used a selective BKCa channel opener molecule (BMS-204352) to address this issue in Fmr1 KO mice, modeling the FXS pathophysiology. In vitro, acute BMS-204352 treatment (10 µM) restored the abnormal dendritic spine phenotype. In vivo, a single injection of BMS-204352 (2 mg/kg) rescued the hippocampal glutamate homeostasis and the behavioral phenotype. Indeed, disturbances in social recognition and interaction, non-social anxiety, and spatial memory were corrected by BMS-204352 in Fmr1 KO mice. CONCLUSION: These results demonstrate that the BKCa channel is a new therapeutic target for FXS. We show that BMS-204352 rescues a broad spectrum of behavioral impairments (social, emotional and cognitive) in an animal model of FXS. This pharmacological molecule might open new ways for FXS therapy.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/prevenção & controle , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/fisiologia , Animais , Síndrome do Cromossomo X Frágil/genética , Humanos , Camundongos , Camundongos Knockout , Fenótipo
8.
Circ Arrhythm Electrophysiol ; 6(2): 371-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23515266

RESUMO

BACKGROUND: L-type calcium channel (LTCC) and Na(+)/Ca(2+) exchanger (NCX) have been implicated in repolarization-dependent arrhythmias, but also modulate calcium and contractility. Although LTCC inhibition is negative inotropic, NCX inhibition has the opposite effect. Combined block may, therefore, offer an advantage for hemodynamics and antiarrhythmic efficiency, particularly in diseased hearts. In a model of proarrhythmia, the dog with chronic atrioventricular block, we investigated whether combined inhibition of NCX and LTCC with SEA-0400 is effective against dofetilide-induced torsade de pointes arrhythmias (TdP), while maintaining calcium homeostasis and hemodynamics. METHODS AND RESULTS: Left ventricular pressure (LVP) and ECG were monitored during infusion of SEA-0400 and verapamil in anesthetized dogs. Different doses were tested against dofetilide-induced TdP in chronic atrioventricular block dogs. In ventricular myocytes, effects of SEA-0400 were tested on action potentials, calcium transients, and early afterdepolarizations. In cardiomyocytes, SEA-0400 (1 µmol/L) blocked 66±3% of outward NCX, 50±2% of inward NCX, and 33±9% of LTCC current. SEA-0400 had no effect on systolic calcium, but slowed relaxation, despite action potential shortening, and increased diastolic calcium. SEA-0400 stabilized dofetilide-induced lability of repolarization and suppressed early afterdepolarizations. In vivo, SEA-0400 (0.4 and 0.8 mg/kg) had no effect on left ventricular pressure and suppressed dofetilide-induced TdPs dose dependently. Verapamil (0.3 mg/kg) also inhibited TdP, but caused a 15±8% drop of left ventricular pressure. A lower dose of verapamil without effects on left ventricular pressure (0.06 mg/kg) was not antiarrhythmic. CONCLUSIONS: In chronic atrioventricular block dogs, SEA-0400 treatment is effective against TdP. Unlike specific inhibition of LTCC, combined NCX and LTCC inhibition has no negative effects on cardiac hemodynamics.


Assuntos
Compostos de Anilina/farmacologia , Arritmias Cardíacas/tratamento farmacológico , Canais de Cálcio Tipo L/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Éteres Fenílicos/farmacologia , Trocador de Sódio e Cálcio/antagonistas & inibidores , Função Ventricular/efeitos dos fármacos , Pressão Ventricular/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Antiarrítmicos , Arritmias Cardíacas/fisiopatologia , Canais de Cálcio Tipo L/metabolismo , Modelos Animais de Doenças , Cães , Eletrocardiografia , Ventrículos do Coração/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Trocador de Sódio e Cálcio/metabolismo
9.
Am J Physiol Heart Circ Physiol ; 297(1): H102-8, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19429824

RESUMO

Ectopic activity in cardiac muscle within pulmonary veins (PVs) is associated with the onset and the maintenance of atrial fibrillation in humans. The mechanism underlying this ectopic activity is unknown. Here we investigate automatic activity generated by catecholaminergic stimulation in the rat PV. Intracellular microelectrodes were used to record electrical activity in isolated strips of rat PV and left atrium (LA). The resting cardiac muscle membrane potential was lower in PV [-70 +/- 1 (SE) mV, n = 8] than in LA (-85 +/- 1 mV, n = 8). No spontaneous activity was recorded in PV or LA under basal conditions. Norepinephrine (10(-5) M) induced first a hyperpolarization (-8 +/- 1 mV in PV, -3 +/- 1 mV in LA, n = 8 for both) then a slowly developing depolarization (+21 +/- 2 mV after 15 min in PV, +1 +/- 2 mV in LA) of the resting membrane potential. Automatic activity occurred only in PV; it was triggered at approximately -50 mV, and it occurred as repetitive bursts of slow action potentials. The diastolic membrane potential increased during a burst and slowly depolarized between bursts. Automatic activity in the PV was blocked by either atenolol or prazosine, and it could be generated with a mixture of cirazoline and isoprenaline. In both tissues, cirazoline (10(-6) M) induced a depolarization (+37 +/- 2 mV in PV, n = 5; +5 +/- 1 mV in LA, n = 5), and isoprenaline (10(-7) M) evoked a hyperpolarization (-11 +/- 3 mV in PV, n = 7; -3 +/- 1 mV in LA, n = 6). The differences in membrane potential and reaction to adrenergic stimulation lead to automatic electrical activity occurring specifically in cardiac muscle in the PV.


Assuntos
Catecolaminas/fisiologia , Coração/fisiologia , Veias Pulmonares/fisiologia , Agonistas Adrenérgicos/farmacologia , Antagonistas Adrenérgicos/farmacologia , Animais , Eletrofisiologia , Átrios do Coração , Técnicas In Vitro , Masculino , Potenciais da Membrana/efeitos dos fármacos , Microeletrodos , Miocárdio , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA