Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antib Ther ; 7(3): 233-248, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39262442

RESUMO

Despite their triumph in treating human diseases, antibody therapies for animals have gained momentum more slowly. However, the first approvals of animal antibodies for osteoarthritic pain in cats and dogs may herald the dawn of a new era. For example, goats are vital to economies around the world for their milk, meat, and hide products. It is therefore imperative to develop therapies to safeguard goats-with antibodies at the forefront. Goat antibodies will be crucial in the development of therapeutic antibodies, for example, as tracers to study antibody distribution in vivo, reagents to develop other therapeutic antibodies, and therapeutic agents themselves (e.g., antibody-drug conjugates). Hamstringing this effort is a still-burgeoning understanding of goat antibodies and their derivatization. Historically, goat antibody conjugates were generated through stochastic chemical modifications, producing numerous attachment sites and modification ratios, thereby deleteriously impacting antigen binding. Site-specific methods exist but often require substantial engineering and have not been demonstrated with goat antibodies. Nevertheless, we present herein a novel method to site-specifically conjugate native goat antibodies: chemo-enzymatic remodeling of the native Fc N-glycan introduces a reactive azide handle, after which click chemistry with strained alkyne partners affords homogeneous conjugates labeled only on the Fc domain. This process is robust, and resulting conjugates retain their antigen binding and specificity. To our knowledge, our report is the first for site-specific conjugation of native goat antibodies. Furthermore, our approach should be applicable to other animal antibodies-even with limited structural information-with similar success.

2.
Biotechnol Prog ; 39(2): e3316, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36471899

RESUMO

Mixed-mode chromatography combines features of ion-exchange chromatography and hydrophobic interaction chromatography and is increasingly used in antibody purification. As a replacement for flow-through operations on traditional unmixed resins or as a pH-controlled bind-and-elute step, the use of both interaction modes promises a better removal of product-specific impurities. However, the combination of the functionalities makes industrial process development significantly more complex, in particular the identification of the often small elution window that delivers the desired selectivity. Mechanistic modeling has proven that even difficult separation problems can be solved in a computer-optimized manner once the process dynamics have been modeled. The adsorption models described in the literature are also very complex, which makes model calibration difficult. In this work, we approach this problem with a newly constructed model that describes the adsorber saturation with the help of the surface coverage function of the colloidal particle adsorption model for ion-exchange chromatography. In a case study, a model for a pH-controlled antibody polishing step was created from six experiments. The behavior of fragments, aggregates, and host cell proteins was described with the help of offline analysis. After in silico optimization, a validation experiment confirmed an improved process performance in comparison to the historical process set point. In addition to these good results, the work also shows that the high dynamics of mixed-mode chromatography can produce unexpected results if process parameters deviate too far from tried and tested conditions.


Assuntos
Anticorpos Monoclonais , Anticorpos Monoclonais/química , Cromatografia por Troca Iônica/métodos
3.
Antib Ther ; 3(4): 271-284, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33644685

RESUMO

Traditionally, non-specific chemical conjugation, such as acylation of amines on lysine or alkylation of thiols on cysteines, are widely used; however, they have several shortcomings. First, the lack of site-specificity results in heterogeneous products and irreproducible processes. Second, potential modifications near the complementarity determining region (CDR) may reduce binding affinity and specificity. Conversely, site-specific methods produce well-defined and more homogenous antibody conjugates, ensuring developability and clinical applications. Moreover, several recent side-by-side comparisons of site-specific and stochastic methods have demonstrated that site-specific approaches are more likely to achieve their desired properties and functions, such as increased plasma stability, less variability in dose-dependent studies (particularly at low concentrations), enhanced binding efficiency, as well as increased tumor uptake. Herein we review several standard and practical site-specific bioconjugation methods for native antibodies, i.e., those without recombinant engineering. First, chemo-enzymatic techniques, namely transglutaminase (TGase)-mediated transamidation of a conserved glutamine residue and glycan remodeling of a conserved asparagine N-glycan (GlyCLICK), both in the Fc region. Second, chemical approaches such as selective reduction of disulfides (ThioBridge) and N-terminal amine modifications. Furthermore, we list site-specific antibody-drug conjugates (ADCs) in clinical trials along with the future perspectives of these site-specific methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA