Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363283

RESUMO

The RNA recognition motif (RRM) is the most common RNA-binding protein domain identified in nature. However, RRM-containing proteins are only prevalent in eukaryotic phyla, in which they play central regulatory roles. Here, we engineered an orthogonal post-transcriptional control system of gene expression in the bacterium Escherichia coli with the mammalian RNA-binding protein Musashi-1, which is a stem cell marker with neurodevelopmental role that contains two canonical RRMs. In the circuit, Musashi-1 is regulated transcriptionally and works as an allosteric translation repressor thanks to a specific interaction with the N-terminal coding region of a messenger RNA and its structural plasticity to respond to fatty acids. We fully characterized the genetic system at the population and single-cell levels showing a significant fold change in reporter expression, and the underlying molecular mechanism by assessing the in vitro binding kinetics and in vivo functionality of a series of RNA mutants. The dynamic response of the system was well recapitulated by a bottom-up mathematical model. Moreover, we applied the post-transcriptional mechanism engineered with Musashi-1 to specifically regulate a gene within an operon, implement combinatorial regulation, and reduce protein expression noise. This work illustrates how RRM-based regulation can be adapted to simple organisms, thereby adding a new regulatory layer in prokaryotes for translation control.


Assuntos
Proteínas do Tecido Nervoso , Proteínas de Ligação a RNA , Animais , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , RNA Mensageiro/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Mamíferos/genética
2.
Microb Biotechnol ; 17(2): e14418, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38381083

RESUMO

CRISPR-Cas systems evolved in prokaryotes to implement a powerful antiviral immune response as a result of sequence-specific targeting by ribonucleoproteins. One of such systems consists of an RNA-guided RNA endonuclease, known as CRISPR-Cas13. In very recent years, this system is being repurposed in different ways in order to decipher and engineer gene expression programmes. Here, we discuss the functional versatility of the CRISPR-Cas13 system, which includes the ability for RNA silencing, RNA editing, RNA tracking, nucleic acid detection and translation regulation. This functional palette makes the CRISPR-Cas13 system a relevant tool in the broad field of systems and synthetic biology.


Assuntos
Sistemas CRISPR-Cas , Células Procarióticas , RNA , Ribonucleoproteínas , Biologia Sintética
3.
Open Res Eur ; 3: 97, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645489

RESUMO

Background: Data management is fast becoming an essential part of scientific practice, driven by open science and FAIR (findable, accessible, interoperable, and reusable) data sharing requirements. Whilst data management plans (DMPs) are clear to data management experts and data stewards, understandings of their purpose and creation are often obscure to the producers of the data, which in academic environments are often PhD students. Methods: Within the RNAct EU Horizon 2020 ITN project, we engaged the 10 RNAct early-stage researchers (ESRs) in a training project aimed at formulating a DMP. To do so, we used the Data Stewardship Wizard (DSW) framework and modified the existing Life Sciences Knowledge Model into a simplified version aimed at training young scientists, with computational or experimental backgrounds, in core data management principles. We collected feedback from the ESRs during this exercise. Results: Here, we introduce our new life-sciences training DMP template for young scientists. We report and discuss our experiences as principal investigators (PIs) and ESRs during this project and address the typical difficulties that are encountered in developing and understanding a DMP. Conclusions: We found that the DS-wizard can also be an appropriate tool for DMP training, to get terminology and concepts across to researchers. A full training in addition requires an upstream step to present basic DMP concepts and a downstream step to publish a dataset in a (public) repository. Overall, the DS-Wizard tool was essential for our DMP training and we hope our efforts can be used in other projects.

4.
PLoS Comput Biol ; 18(5): e1010087, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35522697

RESUMO

Gene expression is inherently stochastic and pervasively regulated. While substantial work combining theory and experiments has been carried out to study how noise propagates through transcriptional regulations, the stochastic behavior of genes regulated at the level of translation is poorly understood. Here, we engineered a synthetic genetic system in which a target gene is down-regulated by a protein translation factor, which in turn is regulated transcriptionally. By monitoring both the expression of the regulator and the regulated gene at the single-cell level, we quantified the stochasticity of the system. We found that with a protein translation factor a tight repression can be achieved in single cells, noise propagation from gene to gene is buffered, and the regulated gene is sensitive in a nonlinear way to global perturbations in translation. A suitable mathematical model was instrumental to predict the transfer functions of the system. We also showed that a Gamma distribution parameterized with mesoscopic parameters, such as the mean expression and coefficient of variation, provides a deep analytical explanation about the system, displaying enough versatility to capture the cell-to-cell variability in genes regulated both transcriptionally and translationally. Overall, these results contribute to enlarge our understanding on stochastic gene expression, at the same time they provide design principles for synthetic biology.


Assuntos
Regulação da Expressão Gênica , Biossíntese de Proteínas , Regulação da Expressão Gênica/genética , Modelos Genéticos , Biossíntese de Proteínas/genética , Processos Estocásticos , Biologia Sintética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA