Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
ACS Chem Neurosci ; 14(22): 3993-4012, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37903506

RESUMO

Copy number variants (CNVs) that delete or duplicate 30 genes within the 16p11.2 genomic region give rise to a range of neurodevelopmental phenotypes with high penetrance in humans. Despite the identification of this small region, the mechanisms by which 16p11.2 CNVs lead to disease are unclear. Relevant models, such as human cortical organoids (hCOs), are needed to understand the human-specific mechanisms of neurodevelopmental disease. We generated hCOs from 17 patients and controls, profiling 167,958 cells with single-cell RNA-sequencing analysis, which revealed neuronal-specific differential expression of genes outside the 16p11.2 region that are related to cell-cell adhesion, neuronal projection growth, and neurodevelopmental disorders. Furthermore, 16p11.2 deletion syndrome organoids exhibited reduced mRNA and protein levels of RBFOX1, a gene that can also harbor CNVs linked to neurodevelopmental phenotypes. We found that the genes previously shown to be regulated by RBFOX1 are also perturbed in organoids from patients with the 16p11.2 deletion syndrome and thus identified a novel link between independent CNVs associated with neuronal development and autism. Overall, this work suggests convergent signaling, which indicates the possibility of a common therapeutic mechanism across multiple rare neuronal diseases.


Assuntos
Deleção Cromossômica , Variações do Número de Cópias de DNA , Humanos , Variações do Número de Cópias de DNA/genética , Encéfalo , Fenótipo , Organoides , Fatores de Processamento de RNA/genética
2.
N Engl J Med ; 388(8): 706-718, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36812434

RESUMO

BACKGROUND: Moderate-to-severe hemophilia B is treated with lifelong, continuous coagulation factor IX replacement to prevent bleeding. Gene therapy for hemophilia B aims to establish sustained factor IX activity, thereby protecting against bleeding without burdensome factor IX replacement. METHODS: In this open-label, phase 3 study, after a lead-in period (≥6 months) of factor IX prophylaxis, we administered one infusion of adeno-associated virus 5 (AAV5) vector expressing the Padua factor IX variant (etranacogene dezaparvovec; 2×1013 genome copies per kilogram of body weight) to 54 men with hemophilia B (factor IX activity ≤2% of the normal value) regardless of preexisting AAV5 neutralizing antibodies. The primary end point was the annualized bleeding rate, evaluated in a noninferiority analysis comparing the rate during months 7 through 18 after etranacogene dezaparvovec treatment with the rate during the lead-in period. Noninferiority of etranacogene dezaparvovec was defined as an upper limit of the two-sided 95% Wald confidence interval of the annualized bleeding rate ratio that was less than the noninferiority margin of 1.8. Superiority, additional efficacy measures, and safety were also assessed. RESULTS: The annualized bleeding rate decreased from 4.19 (95% confidence interval [CI], 3.22 to 5.45) during the lead-in period to 1.51 (95% CI, 0.81 to 2.82) during months 7 through 18 after treatment, for a rate ratio of 0.36 (95% Wald CI, 0.20 to 0.64; P<0.001), demonstrating noninferiority and superiority of etranacogene dezaparvovec as compared with factor IX prophylaxis. Factor IX activity had increased from baseline by a least-squares mean of 36.2 percentage points (95% CI, 31.4 to 41.0) at 6 months and 34.3 percentage points (95% CI, 29.5 to 39.1) at 18 months after treatment, and usage of factor IX concentrate decreased by a mean of 248,825 IU per year per participant in the post-treatment period (P<0.001 for all three comparisons). Benefits and safety were observed in participants with predose AAV5 neutralizing antibody titers of less than 700. No treatment-related serious adverse events occurred. CONCLUSIONS: Etranacogene dezaparvovec gene therapy was superior to prophylactic factor IX with respect to the annualized bleeding rate, and it had a favorable safety profile. (Funded by uniQure and CSL Behring; HOPE-B ClinicalTrials.gov number, NCT03569891.).


Assuntos
Fator IX , Terapia Genética , Hemofilia B , Humanos , Masculino , Fator IX/genética , Fator IX/uso terapêutico , Terapia Genética/métodos , Hemofilia B/complicações , Hemofilia B/genética , Hemofilia B/terapia , Hemorragia/etiologia , Hemorragia/terapia , Vetores Genéticos/administração & dosagem
3.
Neurol Clin Pract ; 12(6): e172-e180, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36540140

RESUMO

Background and Objectives: Huntington disease (HD) is a rare, inherited, and highly complex neurodegenerative disorder with no currently approved disease-modifying treatments. We investigated the effect of HD on health-related quality of life and other patient-reported outcomes in the Huntington's Disease Burden of Illness (HDBOI) study. Methods: The HDBOI study is a retrospective, cross-sectional study conducted between September 2020 and May 2021 in France, Germany, Italy, Spain, the United Kingdom, and the United States. People with symptomatic onset HD (PwHD) were recruited by their HD-treating physicians and categorized as early (ES), mid (MS), or advanced stage (AS) HD. Physicians provided sociodemographic and clinical information from the participant's medical records in electronic case report forms (eCRF); participants or their proxies completed online Patient Public Involvement Engagement questionnaires (PPIE-P). Patient-reported outcomes included the 5-level EQ-5D version (EQ-5D-5L), Short-Form-(SF)-36 v2 (and SF-6-Dimension [SF-6D] utility), Huntington Quality of Life Instrument (H-QoL-I), and the Work Productivity and Activity Impairment Specific Health Problem. All outcomes were summarized using descriptive statistics, and differences between disease stages were assessed by Kruskal-Wallis tests. Results: A total of 2,094 PwHD were enrolled with completed eCRFs (100%) and PPIE-P forms (n = 482, 23%). Participants' mean age was 47.3 years; they were generally evenly distributed across countries, with the majority being ES (40%) followed by MS (33%) and LS (26%). The mean EQ-5D-5L (n = 336) utility score was 0.59 (SD, 0.27), with the highest mean utility scores [SD] in ES (0.72 [0.22]) followed by MS (0.62 [0.18]) and AS (0.37 [0.30]), p < 0.001. The mean SF-6D score (n = 482) was 0.57 (SD, 0.10), with mean values decreasing with advanced disease (ES, 0.61; MS, 0.56; AS, 0.50, p < 0.001). H-QoL-I mean scores (n = 482) also worsened with more advanced disease, from 0.58 for ES to 0.49 for MS and 0.37 for AS, p < 0.001. Impairment in daily activities and in work productivity also increased with more advanced disease. Overall proxy respondents reported on average worse outcomes than PwHD (self-reported) across all outcomes and disease stages suggesting a possible unawareness of deficits by PwHD. Discussion: The HDBOI study provides new insights into the characteristics and humanistic burden of PwHD and offers a meaningful contribution to this underserved research area.

4.
Ann N Y Acad Sci ; 1506(1): 5-17, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34342000

RESUMO

Neurodevelopmental neuropsychiatric disorders, such as autism spectrum disorder and schizophrenia, have strong genetic risk components, but the underlying mechanisms have proven difficult to decipher. Rare, high-risk variants may offer an opportunity to delineate the biological mechanisms responsible more clearly for more common idiopathic diseases. Indeed, different rare variants can cause the same behavioral phenotype, demonstrating genetic heterogeneity, while the same rare variant can cause different behavioral phenotypes, demonstrating variable expressivity. These observations suggest convergent underlying biological and neurological mechanisms; identification of these mechanisms may ultimately reveal new therapeutic targets. At the 2021 Keystone eSymposium "Neuropsychiatric and Neurodevelopmental Disorders: Harnessing Rare Variants" a panel of experts in the field described significant progress in genomic discovery and human phenotyping and raised several consistent issues, including the need for detailed natural history studies of rare disorders, the challenges in cohort recruitment, and the importance of viewing phenotypes as quantitative traits that are impacted by rare variants.


Assuntos
Congressos como Assunto/tendências , Variação Genética/genética , Transtornos Mentais/genética , Transtornos do Neurodesenvolvimento/genética , Penetrância , Relatório de Pesquisa , Humanos , Transtornos Mentais/diagnóstico , Transtornos Mentais/psicologia , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/psicologia
5.
Elife ; 92020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33169669

RESUMO

Microdeletions and microduplications of the 16p11.2 chromosomal locus are associated with syndromic neurodevelopmental disorders and reciprocal physiological conditions such as macro/microcephaly and high/low body mass index. To facilitate cellular and molecular investigations into these phenotypes, 65 clones of human induced pluripotent stem cells (hiPSCs) were generated from 13 individuals with 16p11.2 copy number variations (CNVs). To ensure these cell lines were suitable for downstream mechanistic investigations, a customizable bioinformatic strategy for the detection of random integration and expression of reprogramming vectors was developed and leveraged towards identifying a subset of 'footprint'-free hiPSC clones. Transcriptomic profiling of cortical neural progenitor cells derived from these hiPSCs identified alterations in gene expression patterns which precede morphological abnormalities reported at later neurodevelopmental stages. Interpreting clinical information-available with the cell lines by request from the Simons Foundation Autism Research Initiative-with this transcriptional data revealed disruptions in gene programs related to both nervous system function and cellular metabolism. As demonstrated by these analyses, this publicly available resource has the potential to serve as a powerful medium for probing the etiology of developmental disorders associated with 16p11.2 CNVs.


Assuntos
Deleção de Genes , Células-Tronco Pluripotentes Induzidas/fisiologia , Transtorno do Espectro Autista/genética , Transtorno Autístico , Deleção Cromossômica , Transtornos Cromossômicos , Cromossomos Humanos Par 16 , Variações do Número de Cópias de DNA , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Neurônios/fisiologia , Transcobalaminas
6.
Nat Med ; 26(12): 1888-1898, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32989314

RESUMO

22q11.2 deletion syndrome (22q11DS) is a highly penetrant and common genetic cause of neuropsychiatric disease. Here we generated induced pluripotent stem cells from 15 individuals with 22q11DS and 15 control individuals and differentiated them into three-dimensional (3D) cerebral cortical organoids. Transcriptional profiling across 100 days showed high reliability of differentiation and revealed changes in neuronal excitability-related genes. Using electrophysiology and live imaging, we identified defects in spontaneous neuronal activity and calcium signaling in both organoid- and 2D-derived cortical neurons. The calcium deficit was related to resting membrane potential changes that led to abnormal inactivation of voltage-gated calcium channels. Heterozygous loss of DGCR8 recapitulated the excitability and calcium phenotypes and its overexpression rescued these defects. Moreover, the 22q11DS calcium abnormality could also be restored by application of antipsychotics. Taken together, our study illustrates how stem cell derived models can be used to uncover and rescue cellular phenotypes associated with genetic forms of neuropsychiatric disease.


Assuntos
Sinalização do Cálcio/genética , Córtex Cerebral/ultraestrutura , Síndrome de DiGeorge/diagnóstico , Neurônios/ultraestrutura , Adulto , Diferenciação Celular/genética , Córtex Cerebral/patologia , Síndrome de DiGeorge/patologia , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Masculino , Neurônios/patologia , Organoides/patologia , Organoides/ultraestrutura , Adulto Jovem
7.
Elife ; 82019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31868578

RESUMO

The syndromic autism spectrum disorder (ASD) Timothy syndrome (TS) is caused by a point mutation in the alternatively spliced exon 8A of the calcium channel Cav1.2. Using mouse brain and human induced pluripotent stem cells (iPSCs), we provide evidence that the TS mutation prevents a normal developmental switch in Cav1.2 exon utilization, resulting in persistent expression of gain-of-function mutant channels during neuronal differentiation. In iPSC models, the TS mutation reduces the abundance of SATB2-expressing cortical projection neurons, leading to excess CTIP2+ neurons. We show that expression of TS-Cav1.2 channels in the embryonic mouse cortex recapitulates these differentiation defects in a calcium-dependent manner and that in utero Cav1.2 gain-and-loss of function reciprocally regulates the abundance of these neuronal populations. Our findings support the idea that disruption of developmentally regulated calcium channel splicing patterns instructively alters differentiation in the developing cortex, providing important in vivo insights into the pathophysiology of a syndromic ASD.


Assuntos
Processamento Alternativo/fisiologia , Transtorno do Espectro Autista/metabolismo , Canais de Cálcio/metabolismo , Diferenciação Celular/fisiologia , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Transtorno Autístico , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Cálcio , Canais de Cálcio/genética , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Éxons , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome do QT Longo , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Camundongos , Modelos Animais , Mutação , Neurogênese , Neurônios/citologia , Neurônios/metabolismo , Splicing de RNA , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Sindactilia , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-31186344

RESUMO

Dravet syndrome is an infantile epileptic encephalopathy primarily caused by loss-of-function variants of the gene SCN1A Standard treatment regimens have very limited efficacy to combat the life-threatening seizures in Dravet syndrome or the behavioral-cognitive comorbidities of the disease. Recently there has been encouraging progress in developing new treatments for this disorder. One of the clinical advances is cannabidiol (CBD), a compound naturally found in cannabis and shown to further reduce convulsive seizures in patients when used together with existing drug regimens. Like many other natural products, the exact therapeutic mechanism of CBD remains undefined. Previously we have established a human cellular model of Dravet syndrome by differentiating patient-derived induced pluripotent stem cells (iPSCs) into telencephalic inhibitory and excitatory neurons. Here we have applied this model to investigate the antiepileptic mechanism(s) of CBD at the cellular level. We first determined the effect of escalating the concentrations of CBD on neuronal excitability, using primary culture of rat cortical neurons. We found modulatory effects on excitability at submicromolar concentrations and toxic effects at high concentrations (15 µM). We then tested CBD at 50 nM, a concentration that corresponds to the estimated human clinical exposure, in telencephalic neurons derived from a patient iPSC line and control cell line H9. This 50 nM of CBD increased the excitability of inhibitory neurons but decreased the excitability of excitatory neurons, without changing the amplitude of sodium currents in either cell type. Our findings suggest a cell type-dependent mechanism for the therapeutic action of CBD in Dravet syndrome that is independent of sodium channel activity.

10.
Elife ; 52016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27458797

RESUMO

Dravet Syndrome is an intractable form of childhood epilepsy associated with deleterious mutations in SCN1A, the gene encoding neuronal sodium channel Nav1.1. Earlier studies using human induced pluripotent stem cells (iPSCs) have produced mixed results regarding the importance of Nav1.1 in human inhibitory versus excitatory neurons. We studied a Nav1.1 mutation (p.S1328P) identified in a pair of twins with Dravet Syndrome and generated iPSC-derived neurons from these patients. Characterization of the mutant channel revealed a decrease in current amplitude and hypersensitivity to steady-state inactivation. We then differentiated Dravet-Syndrome and control iPSCs into telencephalic excitatory neurons or medial ganglionic eminence (MGE)-like inhibitory neurons. Dravet inhibitory neurons showed deficits in sodium currents and action potential firing, which were rescued by a Nav1.1 transgene, whereas Dravet excitatory neurons were normal. Our study identifies biophysical impairments underlying a deleterious Nav1.1 mutation and supports the hypothesis that Dravet Syndrome arises from defective inhibitory neurons.


Assuntos
Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/patologia , Mutação , Canal de Sódio Disparado por Voltagem NAV1.1/deficiência , Neurônios/fisiologia , Telencéfalo/fisiologia , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia
11.
Science ; 351(6278): 1199-203, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26847545

RESUMO

SH3 and multiple ankyrin repeat domains 3 (SHANK3) haploinsufficiency is causative for the neurological features of Phelan-McDermid syndrome (PMDS), including a high risk of autism spectrum disorder (ASD). We used unbiased, quantitative proteomics to identify changes in the phosphoproteome of Shank3-deficient neurons. Down-regulation of protein kinase B (PKB/Akt)-mammalian target of rapamycin complex 1 (mTORC1) signaling resulted from enhanced phosphorylation and activation of serine/threonine protein phosphatase 2A (PP2A) regulatory subunit, B56ß, due to increased steady-state levels of its kinase, Cdc2-like kinase 2 (CLK2). Pharmacological and genetic activation of Akt or inhibition of CLK2 relieved synaptic deficits in Shank3-deficient and PMDS patient-derived neurons. CLK2 inhibition also restored normal sociability in a Shank3-deficient mouse model. Our study thereby provides a novel mechanistic and potentially therapeutic understanding of deregulated signaling downstream of Shank3 deficiency.


Assuntos
Transtorno do Espectro Autista/tratamento farmacológico , Proteínas do Tecido Nervoso/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Transtorno do Espectro Autista/enzimologia , Transtorno do Espectro Autista/genética , Deleção Cromossômica , Transtornos Cromossômicos/genética , Cromossomos Humanos Par 22/genética , Modelos Animais de Doenças , Regulação para Baixo , Técnicas de Silenciamento de Genes , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Proteínas dos Microfilamentos , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Neurônios/enzimologia , Fosforilação , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteômica , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
12.
Swiss Med Wkly ; 146: w14241, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26752334

RESUMO

Compared with other medical fields, psychiatry is particularly challenging for rational drug discovery. The therapeutic endpoints are abstract measures of cognitive and behavioral performance, for which we have a very limited understanding of the underlying biological mechanisms. Existing preclinical disease models are also limited in their translational fidelity. Recently, there have been active discussions on the use of human induced pluripotent stem cells (iPSCs) as a catalyzing research tool in psychiatry, but very few review articles in the field have given specific considerations to their use at the interface between psychiatric research and drug discovery. Here, we discuss recent perspectives emerging from this interface. For physicians and researchers on the clinical side, we explain how iPSC-based experimental approaches are placed at the crossroads with psychiatric genetics and how representative studies in the field are addressing biological mechanisms underlying psychiatric disorders. For researchers who directly work with iPSCs and aspire to develop new research techniques, we direct their attention to the utility of this approach for unmet needs in drug discovery workflows.


Assuntos
Descoberta de Drogas , Células-Tronco Pluripotentes Induzidas , Transtornos Mentais/tratamento farmacológico , Psiquiatria , Pesquisa Biomédica , Humanos , Transtornos Mentais/genética , Modelos Biológicos , Terapia de Alvo Molecular
13.
Neurosci Lett ; 605: 18-23, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26232680

RESUMO

The endosome/lysosome system in the nervous system is critically important for a variety of neuronal functions such as neurite outgrowth, retrograde transport, and synaptic plasticity. In neurons, the endosome/lysosome system is crucial for the activity-dependent internalization of membrane proteins and contributes to the regulation of lipid level on the plasma membrane. Although homeostasis of membrane dynamics plays important roles in the properties of central nervous systems, it has not been elucidated how endosome/lysosome system is regulated. Here, we report that phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) mediates the motility of late endosomes and lysosomes in neuronal dendrites. Endosomes and lysosomes are highly motile in resting neurons, however knockdown of PIKfyve led to a significant reduction in late endosomes and lysosomes motility. We also found that vesicle acidification is crucial for their motility and PIKfyve is associated with this process indirectly. These data suggest that PIKfyve mediates vesicle motility through the regulation of vesicle integrity in neurons.


Assuntos
Dendritos/fisiologia , Endossomos/fisiologia , Lisossomos/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Células Cultivadas , Dendritos/ultraestrutura , Humanos , Camundongos Endogâmicos ICR , Fosfatidilinositol 3-Quinases/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Cultura Primária de Células , RNA Interferente Pequeno/genética , Ratos Sprague-Dawley
14.
J Cell Biol ; 209(5): 653-69, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-26033257

RESUMO

Store-operated calcium entry (SOCE) regulates a wide variety of essential cellular functions. SOCE is mediated by STIM1 and STIM2, which sense depletion of ER Ca(2+) stores and activate Orai channels in the plasma membrane. Although the amplitude and dynamics of SOCE are considered important determinants of Ca(2+)-dependent responses, the underlying modulatory mechanisms are unclear. In this paper, we identify STIM2ß, a highly conserved alternatively spliced isoform of STIM2, which, in contrast to all known STIM isoforms, is a potent inhibitor of SOCE. Although STIM2ß does not by itself strongly bind Orai1, it is recruited to Orai1 channels by forming heterodimers with other STIM isoforms. Analysis of STIM2ß mutants and Orai1-STIM2ß chimeras suggested that it actively inhibits SOCE through a sequence-specific allosteric interaction with Orai1. Our results reveal a previously unrecognized functional flexibility in the STIM protein family by which alternative splicing creates negative and positive regulators of SOCE to shape the amplitude and dynamics of Ca(2+) signals.


Assuntos
Processamento Alternativo/fisiologia , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Moléculas de Adesão Celular/metabolismo , Multimerização Proteica/fisiologia , Canais de Cálcio/genética , Moléculas de Adesão Celular/genética , Células HEK293 , Humanos , Mutação , Proteína ORAI1 , Molécula 2 de Interação Estromal
15.
Autism Res ; 8(5): 507-21, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25663600

RESUMO

Recurrent deletions and duplications at chromosomal region 16p11.2 are variably associated with speech delay, autism spectrum disorder, developmental delay, schizophrenia, and cognitive impairments. Social communication deficits are a primary diagnostic symptom of autism. Here we investigated ultrasonic vocalizations (USVs) in young adult male 16p11.2 deletion mice during a novel three-phase male-female social interaction test that detects vocalizations emitted by a male in the presence of an estrous female, how the male changes its calling when the female is suddenly absent, and the extent to which calls resume when the female returns. Strikingly fewer vocalizations were detected in two independent cohorts of 16p11.2 heterozygous deletion males (+/-) during the first exposure to an unfamiliar estrous female, as compared to wildtype littermates (+/+). When the female was removed, +/+ emitted calls, but at a much lower level, whereas +/- males called minimally. Sensory and motor abnormalities were detected in +/-, including higher nociceptive thresholds, a complete absence of acoustic startle responses, and hearing loss in all +/- as confirmed by lack of auditory brainstem responses to frequencies between 8 and 100 kHz. Stereotyped circling and backflipping appeared in a small percentage of individuals, as previously reported. However, these sensory and motor phenotypes could not directly explain the low vocalizations in 16p11.2 deletion mice, since (a) +/- males displayed normal abilities to emit vocalizations when the female was subsequently reintroduced, and (b) +/- vocalized less than +/+ to social odor cues delivered on an inanimate cotton swab. Our findings support the concept that mouse USVs in social settings represent a response to social cues, and that 16p11.2 deletion mice are deficient in their initial USVs responses to novel social cues.


Assuntos
Transtorno Autístico/fisiopatologia , Comportamento Animal/fisiologia , Transtornos Cromossômicos/fisiopatologia , Deficiência Intelectual/fisiopatologia , Comportamento Social , Vocalização Animal/fisiologia , Animais , Deleção Cromossômica , Cromossomos Humanos Par 16 , Modelos Animais de Doenças , Masculino , Camundongos
16.
Genome Med ; 6(10): 75, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25360157

RESUMO

BACKGROUND: Common genetic variation and rare mutations in genes encoding calcium channel subunits have pleiotropic effects on risk for multiple neuropsychiatric disorders, including autism spectrum disorder (ASD) and schizophrenia. To gain further mechanistic insights by extending previous gene expression data, we constructed co-expression networks in Timothy syndrome (TS), a monogenic condition with high penetrance for ASD, caused by mutations in the L-type calcium channel, Cav1.2. METHODS: To identify patient-specific alterations in transcriptome organization, we conducted a genome-wide weighted co-expression network analysis (WGCNA) on neural progenitors and neurons from multiple lines of induced pluripotent stem cells (iPSC) derived from normal and TS (G406R in CACNA1C) individuals. We employed transcription factor binding site enrichment analysis to assess whether TS associated co-expression changes reflect calcium-dependent co-regulation. RESULTS: We identified reproducible developmental and activity-dependent gene co-expression modules conserved in patient and control cell lines. By comparing cell lines from case and control subjects, we also identified co-expression modules reflecting distinct aspects of TS, including intellectual disability and ASD-related phenotypes. Moreover, by integrating co-expression with transcription factor binding analysis, we showed the TS-associated transcriptional changes were predicted to be co-regulated by calcium-dependent transcriptional regulators, including NFAT, MEF2, CREB, and FOXO, thus providing a mechanism by which altered Ca(2+) signaling in TS patients leads to the observed molecular dysregulation. CONCLUSIONS: We applied WGCNA to construct co-expression networks related to neural development and depolarization in iPSC-derived neural cells from TS and control individuals for the first time. These analyses illustrate how a systems biology approach based on gene networks can yield insights into the molecular mechanisms of neural development and function, and provide clues as to the functional impact of the downstream effects of Ca(2+) signaling dysregulation on transcription.

17.
Chem Biol ; 21(10): 1278-1292, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25308275

RESUMO

Store-operated calcium (SOC) channels are vital for activation of the immune cells, and mutations in the channel result in severe combined immunodeficiency in human patients. In lymphocytes, SOC entry is mediated by the Orai1 channel, which is activated by direct binding of STIM1. Here we describe an alternative approach for identifying inhibitors of SOC entry using minimal functional domains of STIM1 and Orai1 to screen a small-molecule microarray. This screen identified AnCoA4, which inhibits SOC entry at submicromolar concentrations and blocks T cell activation in vitro and in vivo. Biophysical studies revealed that AnCoA4 binds to the C terminus of Orai1, directly inhibiting calcium influx through the channel and also reducing binding of STIM1. AnCoA4, unlike other reported SOC inhibitors, is a molecule with a known binding site and mechanism of action. These studies also provide proof of principle for an approach to ion channel drug discovery.


Assuntos
Benzodioxóis/uso terapêutico , Cromonas/uso terapêutico , Proteínas de Drosophila/metabolismo , Proteínas de Membrana/metabolismo , Bibliotecas de Moléculas Pequenas/química , Animais , Benzodioxóis/química , Benzodioxóis/farmacologia , Cromonas/química , Cromonas/farmacologia , Modelos Animais de Doenças , Drosophila , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Fura-2/química , Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Hipersensibilidade Tardia/tratamento farmacológico , Hipersensibilidade Tardia/metabolismo , Hipersensibilidade Tardia/patologia , Imunossupressores/química , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Ativação Linfocitária/efeitos dos fármacos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1 , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Molécula 1 de Interação Estromal , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo
18.
Annu Rev Neurosci ; 37: 479-501, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25002278

RESUMO

Recent advances in cell reprogramming enable investigators to generate pluripotent stem cells from somatic cells. These induced pluripotent cells can subsequently be differentiated into any cell type, making it possible for the first time to obtain functional human neurons in the lab from control subjects and patients with psychiatric disorders. In this review, we survey the progress made in generating various neuronal subtypes in vitro, with special emphasis on the characterization of these neurons and the identification of unique features of human brain development in a dish. We also discuss efforts to uncover neuronal phenotypes from patients with psychiatric disease and prospects for the use of this platform for drug development.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Transtornos Mentais/fisiopatologia , Doenças do Sistema Nervoso/fisiopatologia , Neurogênese/fisiologia , Neurônios/citologia , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Transtornos Mentais/patologia , Doenças do Sistema Nervoso/patologia , Neurônios/patologia
19.
Cell Rep ; 7(4): 1077-1092, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24794428

RESUMO

A deletion on human chromosome 16p11.2 is associated with autism spectrum disorders. We deleted the syntenic region on mouse chromosome 7F3. MRI and high-throughput single-cell transcriptomics revealed anatomical and cellular abnormalities, particularly in cortex and striatum of juvenile mutant mice (16p11(+/-)). We found elevated numbers of striatal medium spiny neurons (MSNs) expressing the dopamine D2 receptor (Drd2(+)) and fewer dopamine-sensitive (Drd1(+)) neurons in deep layers of cortex. Electrophysiological recordings of Drd2(+) MSN revealed synaptic defects, suggesting abnormal basal ganglia circuitry function in 16p11(+/-) mice. This is further supported by behavioral experiments showing hyperactivity, circling, and deficits in movement control. Strikingly, 16p11(+/-) mice showed a complete lack of habituation reminiscent of what is observed in some autistic individuals. Our findings unveil a fundamental role of genes affected by the 16p11.2 deletion in establishing the basal ganglia circuitry and provide insights in the pathophysiology of autism.


Assuntos
Transtorno Autístico/genética , Gânglios da Base/anormalidades , Deleção Cromossômica , Transtornos Cromossômicos/genética , Modelos Animais de Doenças , Deficiência Intelectual/genética , Transtornos Mentais/genética , Animais , Gânglios da Base/patologia , Cromossomos Humanos Par 16/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
20.
Nature ; 503(7475): 267-71, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24132240

RESUMO

Phelan-McDermid syndrome (PMDS) is a complex neurodevelopmental disorder characterized by global developmental delay, severely impaired speech, intellectual disability, and an increased risk of autism spectrum disorders (ASDs). PMDS is caused by heterozygous deletions of chromosome 22q13.3. Among the genes in the deleted region is SHANK3, which encodes a protein in the postsynaptic density (PSD). Rare mutations in SHANK3 have been associated with idiopathic ASDs, non-syndromic intellectual disability, and schizophrenia. Although SHANK3 is considered to be the most likely candidate gene for the neurological abnormalities in PMDS patients, the cellular and molecular phenotypes associated with this syndrome in human neurons are unknown. We generated induced pluripotent stem (iPS) cells from individuals with PMDS and autism and used them to produce functional neurons. We show that PMDS neurons have reduced SHANK3 expression and major defects in excitatory, but not inhibitory, synaptic transmission. Excitatory synaptic transmission in PMDS neurons can be corrected by restoring SHANK3 expression or by treating neurons with insulin-like growth factor 1 (IGF1). IGF1 treatment promotes formation of mature excitatory synapses that lack SHANK3 but contain PSD95 and N-methyl-D-aspartate (NMDA) receptors with fast deactivation kinetics. Our findings provide direct evidence for a disruption in the ratio of cellular excitation and inhibition in PMDS neurons, and point to a molecular pathway that can be recruited to restore it.


Assuntos
Transtornos Cromossômicos/fisiopatologia , Fator de Crescimento Insulin-Like I/farmacologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Linhagem Celular , Criança , Deleção Cromossômica , Transtornos Cromossômicos/genética , Cromossomos Humanos Par 22/genética , Feminino , GABAérgicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lentivirus/genética , Masculino , Neurônios/citologia , Neurônios/efeitos dos fármacos , Células-Tronco Pluripotentes/citologia , Receptores de Glutamato/genética , Deleção de Sequência , Sinapses/genética , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA