Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Respir Med ; 223: 107563, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342357

RESUMO

BACKGROUND: Acute exacerbations of chronic obstructive pulmonary disease (AE-COPD) are associated with a high rate of cardiovascular events. Thromboinflammation (the interplay between coagulation and inflammation) is probably involved in these events. Extracellular vesicles (EV) increase during AE-COPD, but their role in thromboinflammation in COPD is still unknown. We investigated EV-associated prothrombotic and proinflammatory activity in COPD. METHODS: Patients with AE-COPD, stable COPD (sCOPD) and age- and sex-matched subjects (controls) were enrolled. AE-COPD patients were evaluated at hospital admission and 8 weeks after discharge (recovery; longitudinal arm). In a cross-sectional arm, AE-COPD were compared with sCOPD and controls. EV-mediated prothrombotic activity was tested by measuring the concentration of EV-associated phosphatidylserine, as assessed by a prothrombinase assay, and tissue factor, as assessed by a modified one-stage clotting assay (EV-PS and EV-TF, respectively). Synthesis of interleukin-8 (IL-8) and C-C motif chemokine ligand-2 (CCL-2) by cells of the human bronchial epithelial cell line 16HBE incubated with patients' EV was used to measure EV-mediated proinflammatory activity. RESULTS: Twenty-five AE-COPD (median age [interquartile range] 74.0 [14.0] years), 31 sCOPD (75.0 [9.5] years) and 12 control (67.0 [3.5] years) subjects were enrolled. In the longitudinal arm, EV-PS, EV-TF, IL-8 and CCL-2 levels were all significantly higher at hospital admission than at recovery. Similarly, in the cross-sectional arm, EV-PS, EV-TF and cytokines synthesis were significantly higher in AE-COPD than in sCOPD and controls. CONCLUSIONS: EV exert prothrombotic and proinflammatory activities during AE-COPD and may therefore be effectors of thromboinflammation, thus contributing to the higher cardiovascular risk in AE-COPD.


Assuntos
Vesículas Extracelulares , Doença Pulmonar Obstrutiva Crônica , Trombose , Humanos , Idoso , Inflamação/complicações , Interleucina-8 , Tromboinflamação , Estudos Transversais , Trombose/etiologia , Doença Pulmonar Obstrutiva Crônica/complicações
2.
Animals (Basel) ; 13(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958059

RESUMO

Cetaceans are of scientific interest because they are good candidates as environmental bioindicators. However, in vivo research is arduous and in vitro studies represent a rarely used valid alternative. Extracellular vesicles (EVs) are membrane-bound structures playing roles in cell-to-cell communication. Despite being a promising investigative tool in different fields of science, EVs have been poorly studied in cetaceans. To fill this gap, we describe the preliminary characterization of EVs isolated from a bottlenose dolphin and a Cuvier's beaked whale cell line. EVs have been isolated with ultracentrifugation (UC) or size exclusion chromatography (SEC) and characterized with nanoparticle tracking analysis (NTA), Western blotting (WB), and scanning transmission electron microscopy (STEM). UC and SEC allowed the isolation of mainly small EVs (<200 nm). A higher number of particles were isolated through UC compared to SEC from both cell lines. At WB, all EVs expressed the EV-markers CD9 and integrin-ß. Only EVs isolated with UC were positive for TSG101. In conclusion, we isolated for the first time EVs from a bottlenose dolphin and a Cuvier's beaked whale cell line using two different techniques. Further studies on cell-derived EVs will be useful to deepen our knowledge on cetacean pathophysiology and health status assessment.

3.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958646

RESUMO

Citrus fruits are a natural source of ascorbic acid, and exosome-like nanovesicles obtained from these fruits contain measurable levels of ascorbic acid. We tested the ability of grapefruit-derived extracellular vesicles (EVs) to inhibit the growth of human leukemic cells and leukemic patient-derived bone marrow blasts. Transmission electron microscopy and nanoparticle tracking analysis (NTA) showed that the obtained EVs were homogeneous exosomes, defined as exosome-like plant-derived nanovesicles (ELPDNVs). The analysis of their content has shown measurable amounts of several molecules with potent antioxidant activity. ELPDNVs showed a time-dependent antiproliferative effect in both U937 and K562 leukemic cell lines, comparable with the effect of high-dosage ascorbic acid (2 mM). This result was confirmed by a clear decrease in the number of AML blasts induced by ELPDNVs, which did not affect the number of normal cells. ELPDNVs increased the ROS levels in both AML blast cells and U937 without affecting ROS storage in normal cells, and this effect was comparable to ascorbic acid (2 mM). With our study, we propose ELPDNVs from grapefruits as a combination/supporting therapy for human leukemias with the aim to improve the effectiveness of the current therapies.


Assuntos
Citrus paradisi , Exossomos , Leucemia Mieloide Aguda , Humanos , Exossomos/metabolismo , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Agricultura Orgânica , Leucemia Mieloide Aguda/metabolismo
4.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298540

RESUMO

Cancer is a major cause of mortality in humans; often, rather than the primary tumor, it is the presence of metastases that are the cause of death. Extracellular vesicles (EVs) are small structures released by both normal and cancer cells; regarding the latter, they have been demonstrated to modulate almost all cancer-related processes, such as invasion, angiogenesis induction, drug resistance, and immune evasion. In the last years, it has become clear how EVs are widely involved in metastatic dissemination as well as in pre-metastatic niche (PMN) formation. Indeed, in order to achieve a successful metastatic process, i.e., penetration by cancer cells into distant tissues, the shaping of a favorable environment into those distant tissue, i.e., PMN formation, is mandatory. This process consists of an alteration that takes place in a distant organ and paves the way for the engraftment and growth of circulating tumor cells derived from the tumor primary site. This review focuses on the role of EVs in pre-metastatic niche formation and metastatic dissemination, also reporting the last studies suggesting the EVs role as biomarkers of metastatic diseases, possibly in a liquid biopsy approach.


Assuntos
Vesículas Extracelulares , Células Neoplásicas Circulantes , Humanos , Vesículas Extracelulares/patologia , Biomarcadores , Biópsia Líquida , Células Neoplásicas Circulantes/patologia , Morfogênese , Microambiente Tumoral
5.
Antioxidants (Basel) ; 12(6)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37371899

RESUMO

Plant-derived exosomes (PDEs) are receiving much attention as a natural source of antioxidants. Previous research has shown that PDEs contain a series of bioactives and that their content varies depending on the fruit or vegetable source. It has also been shown that fruits and vegetables derived from organic agriculture produce more exosomes, are safer, free of toxic substances, and contain more bioactives. The aim of this study was to investigate the ability of orally administered mixes of PDE (Exocomplex®) to restore the physiological conditions of mice treated for two weeks with hydrogen peroxide (H2O2), compared with mice left untreated after the period of H2O2 administration and mice that received only water during the experimental period. The results showed that Exocomplex® had a high antioxidant capacity and contained a series of bioactives, including Catalase, Glutathione (GSH), Superoxide Dismutase (SOD), Ascorbic Acid, Melatonin, Phenolic compounds, and ATP. The oral administration of Exocomplex® to the H2O2-treated mice re-established redox balance with reduced serum levels of both reactive oxygen species (ROS) and malondialdehyde (MDA), but also a general recovery of the homeostatic condition at the organ level, supporting the future use of PDE for health care.

6.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36361853

RESUMO

Vascular smooth muscle cells (VSMCs) are key participants in both early- and late-stage atherosclerosis and influence neighbouring cells possibly by means of bioactive molecules, some of which are packed into extracellular vesicles (EVs). Proprotein convertase subtilisin/kexin type 9 (PCSK9) is expressed and secreted by VSMCs. This study aimed to unravel the role of PCSK9 on VSMCs-derived EVs in terms of content and functionality. EVs were isolated from human VSMCs overexpressing human PCSK9 (VSMCPCSK9-EVs) and tested on endothelial cells, monocytes, macrophages and in a model of zebrafish embryos. Compared to EVs released from wild-type VSMCs, VSMCPCSK9-EVs caused a rise in the expression of adhesion molecules in endothelial cells and of pro-inflammatory cytokines in monocytes. These acquired an increased migratory capacity, a reduced oxidative phosphorylation and secreted proteins involved in immune response and immune effector processes. Concerning macrophages, VSMCPCSK9-EVs enhanced inflammatory milieu and uptake of oxidized low-density lipoproteins, whereas the migratory capacity was reduced. When injected into zebrafish embryos, VSMCPCSK9-EVs favoured the recruitment of macrophages toward the site of injection. The results of the present study provide evidence that PCSK9 plays an inflammatory role by means of EVs, at least by those derived from smooth muscle cells of vascular origin.


Assuntos
Vesículas Extracelulares , Pró-Proteína Convertase 9 , Animais , Humanos , Pró-Proteína Convertase 9/metabolismo , Músculo Liso Vascular/metabolismo , Peixe-Zebra/metabolismo , Células Endoteliais/metabolismo , Miócitos de Músculo Liso/metabolismo , Vesículas Extracelulares/metabolismo
7.
Ther Adv Med Oncol ; 14: 17588359221131229, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353504

RESUMO

Lung cancer has a high morbidity and mortality rate, and affected patients have a poor prognosis and low survival. The therapeutic approaches for lung cancer treatment, including surgery, radiotherapy, and chemotherapy, are not completely effective, due to late diagnosis. Although the identification of genetic drivers has contributed to the improvement of lung cancer clinical management, the discovery of new diagnostic and prognostic tools remains a critical issue. Liquid biopsy (LB) represents a minimally invasive approach and practical alternative source to investigate tumor-derived alterations and to facilitate the selection of targeted therapies. LB allows for the testing of different analytes such as circulating tumor cells, extracellular vesicles (EVs), tumor-educated platelets, and cell-free nucleic acids including DNAs, RNAs, and noncoding RNAs (ncRNAs). Several regulatory factors control the key cellular oncogenic pathways involved in cancers. ncRNAs have a wide range of regulatory effects in lung cancers. This review focuses on emerging regulatory ncRNAs, freely circulating in body fluids or shuttled by EVs, such as circular-RNAs, small nucleolar-RNAs, small nuclear-RNAs, and piwi-RNAs, as new biomarkers for early detection, prognosis, and monitoring of therapeutic strategy of lung cancer treatment.

8.
Int J Mol Sci ; 23(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36233083

RESUMO

The role of extracellular vesicles (EVs) as mediators of cell-to-cell communication in cancer progression is widely recognized. In vitro studies are routinely performed on 2D culture models, but recent studies suggest that 3D cultures could represent a more valid model. Human ovarian cancer cells CABA I were cultured by the hanging drop method to form tumor spheroids, that were moved to low adhesion supports to observe their morphology by Scanning Electron Microscopy (SEM) and to isolate the EVs. EVs release was verified by SEM and their identity confirmed by morphology (Transmission Electron Microscopy, TEM), size distribution (Nanoparticles Tracking Analysis), and markers (CD63, CD9, TSG-101, Calnexin). CABA I form spheroids with a clinically relevant size, above 400 µm; they release EVs on their external surface and also trap "inner" EVs. They also produce vasculogenic mimicry-like tubules, that bulge from the spheroid and are composed of a hollow lumen delimited by tumor cells. CABA I can be grown as multicellular spheroids to easily isolate EVs. The presence of features typical of in vivo tumors (inner entrapped EVs and vasculogenic mimicry) suggests their use as faithful experimental models to screen therapeutic drugs targeting these pro-tumorigenic processes.


Assuntos
Vesículas Extracelulares , Neoplasias Ovarianas , Calnexina , Diferenciação Celular , Feminino , Humanos , Esferoides Celulares
9.
Front Oncol ; 12: 933746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936755

RESUMO

Temozolomide (TMZ) resistance is frequent in patients with glioblastoma (GBM), a tumor characterized by a marked inflammatory microenvironment. Recently, we reported that cyclooxygenase-2 (COX-2) is upregulated in TMZ-resistant GBM cells treated with high TMZ concentrations. Moreover, COX-2 activity inhibition significantly counteracted TMZ-resistance of GBM cells. Extracellular vesicles (EV) are considered crucial mediators in orchestrating GBM drug resistance by modulating the tumor microenvironment (TME) and affecting the surrounding recipient cell phenotype and behavior. This work aimed to verify whether TMZ, at low and clinically relevant doses (5-20 µM), could induce COX-2 overexpression in GBM cells (T98G and U87MG) and explore if secreted EV shuttled COX-2 to recipient cells. The effect of COX-2 inhibitors (COXIB), Celecoxib (CXB), or NS398, alone or TMZ-combined, was also investigated. Our results indicated that TMZ at clinically relevant doses upregulated COX-2 in GBM cells. COXIB treatment significantly counteracted TMZ-induced COX-2 expression, confirming the crucial role of the COX-2/PGE2 system in TMZ-resistance. The COXIB specificity was verified on U251MG, COX-2 null GBM cells. Western blotting of GBM-EV cells showed the COX-2 presence, with the same intracellular trend, increasing in EV derived from TMZ-treated cells and decreasing in those derived from COXIB+TMZ-treated cells. We then evaluated the effect of EV secreted by TMZ-treated cells on U937 and U251MG, used as recipient cells. In human macrophage cell line U937, the internalization of EV derived by TMZ-T98G cells led to a shift versus a pro-tumor M2-like phenotype. On the other hand, EV from TMZ-T98G induced a significant decrease in TMZ sensitivity in U251MG cells. Overall, our results, in confirming the crucial role played by COX-2 in TMZ-resistance, provide the first evidence of the presence and effective functional transfer of this enzyme through EV derived from GBM cells, with multiple potential consequences at the level of TME.

10.
Cancers (Basel) ; 14(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35884464

RESUMO

Ovarian cancer (OC) is one of the most lethal gynecologic malignancies in females worldwide. OC is frequently diagnosed at an advanced stage due to a lack of specific symptoms and effective screening tests, resulting in a poor prognosis for patients. Age, genetic alterations, and family history are the major risk factors for OC pathogenesis. Understanding the molecular mechanisms underlying OC progression, identifying new biomarkers for early detection, and discovering potential targets for new drugs are urgent needs. Liquid biopsy (LB), used for cancer detection and management, consists of a minimally invasive approach and practical alternative source to investigate tumor alterations by testing extracellular vesicles (EVs), circulating tumor cells, tumor-educated platelets, and cell-free nucleic acids. EVs are nanosize vesicles shuttling proteins, lipids, and nucleic acids, such as DNA, RNA, and non-coding RNAs (ncRNAs), that can induce phenotypic reprogramming of target cells. EVs are natural intercellular shuttles for ncRNAs, such as microRNAs (miRNAs) and circular-RNAs (circRNAs), known to have regulatory effects in OC. Here we focus on the involvement of circRNAs and miRNAs in OC cancer progression. The circRNA-microRNA-mRNA axis has been investigated with Circbank and miRwalk analysis, unraveling the intricate and detailed regulatory network created by EVs, ncRNAs, and mRNAs in OC.

11.
Pharmaceuticals (Basel) ; 15(5)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35631449

RESUMO

During rheumatoid arthritis (RA), the pathogenic role of resident cells within the synovial membrane is suggested, especially for a population frequently referred to as fibroblast-like synoviocytes (FLSs). In this study, we assess the markers of myofibroblast differentiation of RA-FLSs by ex vivo observations and in vitro evaluations following the stimulation with both TGF-ß and IL-6. Furthermore, we investigated the possible inhibiting role of tofacitinib, a JAK inhibitor, in this context. Myofibroblast differentiation markers were evaluated on RA synovial tissues by immune-fluorescence or immune-histochemistry. RA-FLSs, stimulated with transforming growth factor (TGF-ß) and interleukin-6 (IL-6) with/without tofacitinib, were assessed for myofibroblast differentiation markers expression by qRT-PCR and Western blot. The same markers were evaluated following JAK-1 silencing by siRNA assay. The presence of myofibroblast differentiation markers in RA synovial tissue was significantly higher than healthy controls. Ex vivo, α-SMA was increased, whereas E-Cadherin decreased. In vitro, TGF-ß and IL-6 stimulation of RA-FLSs promoted a significant increased mRNA expression of collagen I and α-SMA, whereas E-Cadherin mRNA expression was decreased. In the same conditions, the stimulation with tofacitinib significantly reduced the mRNA expression of collagen I and α-SMA, even if the Western blot did not confirm this finding. JAK-1 gene silencing did not fully prevent the effects of stimulation with TGF-ß and IL-6 on these features. TGF-ß and IL-6 stimulation may play a role in mediating myofibroblast differentiation from RA-FLSs, promoting collagen I and α-SMA while decreasing E-Cadherin. Following the same stimulation, tofacitinib reduced the increases of both collagen I and α-SMA on RA-FLSs, although further studies are needed to fully evaluate this issue and confirm our results.

12.
J Clin Endocrinol Metab ; 107(8): 2243-2253, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35567590

RESUMO

CONTEXT: Involvement of the pituitary gland in SARS-CoV-2 infection has been clinically suggested by pituitary hormone deficiency in severe COVID-19 cases, by altered serum adrenocorticotropic hormone (ACTH) levels in hospitalized patients, and by cases of pituitary apoplexy. However, the direct viral infection of the gland has not been investigated. OBJECTIVE: To evaluate whether the SARS-CoV-2 genome and antigens could be present in pituitary glands of lethal cases of COVID-19, and to assess possible changes in the expression of immune-related and pituitary-specific genes. METHODS: SARS-CoV-2 genome and antigens were searched in the pituitary gland of 23 patients who died from COVID-19 and, as controls, in 12 subjects who died from trauma or sudden cardiac death. Real-time reverse transcription polymerase chain reaction (PCR), in situ hybridization, immunohistochemistry, and transmission electron microscopy were utilized. Levels of mRNA transcripts of immune-related and pituitary-specific genes were measured by the nCounter assay. RESULTS: The SARS-CoV-2 genome and antigens were detected in 14/23 (61%) pituitary glands of the COVID-19 group, not in controls. In SARS-CoV-2-positive pituitaries, the viral genome was consistently detected by PCR in the adeno- and the neurohypophysis. Immunohistochemistry, in situ hybridization, and transmission electron microscopy confirmed the presence of SARS-CoV-2 in the pituitary. Activation of type I interferon signaling and enhanced levels of neutrophil and cytotoxic cell scores were found in virus-positive glands. mRNA transcripts of pituitary hormones and pituitary developmental/regulatory genes were suppressed in all COVID-19 cases irrespective of virus positivity. CONCLUSION: Our study supports the tropism of SARS-CoV-2 for human pituitary and encourages exploration of pituitary dysfunction after COVID-19.


Assuntos
COVID-19 , COVID-19/genética , Teste para COVID-19 , Humanos , Hormônios Hipofisários , RNA Mensageiro , SARS-CoV-2/genética
13.
Haematologica ; 107(9): 2183-2194, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35263984

RESUMO

Multiple myeloma (MM) is an incurable hematologic neoplasm, whose poor prognosis is deeply affected by the propensity of tumor cells to localize in the bone marrow (BM) and induce the protumorigenic activity of normal BM cells, leading to events associated with tumor progression, including tumor angiogenesis, osteoclastogenesis, and the spread of osteolytic bone lesions. The interplay between MM cells and the BM niche does not only rely on direct cell-cell interaction, but a crucial role is also played by MM-derived extracellular vesicles (MM-EV). Here, we demonstrated that the oncogenic NOTCH receptors are part of MM-EV cargo and play a key role in EV protumorigenic ability. We used in vitro and in vivo models to investigate the role of EV-derived NOTCH2 in stimulating the protumorigenic behavior of endothelial cells and osteoclast progenitors. Importantly, MM-EV can transfer NOTCH2 between distant cells and increase NOTCH signaling in target cells. MM-EV stimulation increases endothelial cell angiogenic ability and osteoclast differentiation in a NOTCH2-dependent way. Indeed, interfering with NOTCH2 expression in MM cells may decrease the amount of NOTCH2 also in MM-EV and affect their angiogenic and osteoclastogenic potential. Finally, we demonstrated that the pharmacologic blockade of NOTCH activation by γ-secretase inhibitors may hamper the biological effect of EV derived by MM cell lines and by the BM of MM patients. These results provide the first evidence that targeting the NOTCH pathway may be a valid therapeutic strategy to hamper the protumorigenic role of EV in MM as well as other tumors.


Assuntos
Vesículas Extracelulares , Mieloma Múltiplo , Medula Óssea/patologia , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Mieloma Múltiplo/patologia , Microambiente Tumoral
14.
Front Oncol ; 12: 839880, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280782

RESUMO

Fibroblasts in the tumor microenvironment have been proven to actively participate in tumor progression; they can be "educated" by cancer cells acquiring an activated state and, as such, are identified as cancer-associated fibroblasts (CAFs); CAFs, in turn, remodel tumor stroma to be more advantageous for cancer progression by modulating several processes, including angiogenesis, immunosuppression, and drug access, presumably driving the chemoresistance. That is why they are believed to hamper the response to clinical therapeutic options. The communication between cancer cells and fibroblasts can be mediated by extracellular vesicles (EVs), composed of both exosomes (EXOs) and microvesicles (MVs). To verify the role of different subpopulations of EVs in this cross-talk, a nearly pure subpopulation of EXO-like EVs and the second one of mixed EXO- and MV-like EVs were isolated from ovarian cancer cells and administered to fibroblasts. It turned out that EVs can activate fibroblasts to a CAF-like state, supporting their proliferation, motility, invasiveness, and enzyme expression; EXO-like EV subpopulation seems to be more efficient in some of those processes, suggesting different roles for different EV subpopulations. Moreover, the secretome of these "activated" fibroblasts, composed of both soluble and EV-associated molecules, was, in turn, able to modulate the response of bystander cells (fibroblasts, tumor, and endothelial cells), supporting the idea that EVs sustain the mutual cross-talk between tumor cells and CAFs.

15.
Arthritis Res Ther ; 23(1): 213, 2021 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-34391476

RESUMO

OBJECTIVE: During rheumatoid arthritis (RA), the angiogenic processes, occurring with pannus-formation, may be a therapeutic target. JAK/STAT-pathway may play a role and the aim of this work was to investigate the inhibiting role of a JAK-inhibitor, tofacitinib, on the angiogenic mechanisms occurring during RA. METHODS: After ethical approval, JAK-1, JAK-3, STAT-1, STAT-3 and VEGF expression was evaluated on RA-synovial-tissues. In vitro, endothelial cells (ECs), stimulated with 20 ng/ml of VEGF and/or 1 µM of tofacitinib, were assessed for tube formation, migration and proliferation, by Matrigel, Boyden chamber assay and ki67 gene-expression. In vivo, 32 mice received collagen (collagen-induced arthritis (CIA)) and 32 mice PBS (control). At day 19, CIA and controls mice were divided: 16 mice receiving vehicle and 16 mice receiving tofacitinib. At day 35, the arthritis score, the thickness of paw joints and the serum levels of VEGF and Ang-2 were evaluated. RESULTS: The expression of JAK-1, JAK-3, STAT-1, STAT-3 and VEGF in synovial tissue of RA-patients were significantly higher than healthy controls. In vitro, tofacitinib inhibited the ECs ability to form vessels, to proliferate and to migrate. In vivo, administration of tofacitinib prevented the increase of the arthritis score, the paw thickness, the synovial vessels and VEGF and Ang-2 serum-accumulation, when compared to CIA without tofacitinib. CONCLUSIONS: We explored the anti-angiogenic role of tofacitinib, reporting its ability to inhibit in vitro the angiogenic mechanisms of ECs and in vivo the formation of new synovial vessels, occurring in CIA model. These findings suggest that the therapeutic effect of tofacitinib during RA may be also related to its anti-angiogenic activity.


Assuntos
Artrite Experimental , Animais , Artrite Experimental/tratamento farmacológico , Células Endoteliais , Humanos , Camundongos , Piperidinas , Pirimidinas/farmacologia , Pirróis/farmacologia , Membrana Sinovial
16.
Anal Chem ; 93(13): 5476-5483, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33769802

RESUMO

Extracellular vesicles (EVs) have attracted considerable interest due to their role in cell-cell communication, disease diagnosis, and drug delivery. Despite their potential in the medical field, there is no consensus on the best method for separating micro- and nanovesicles from cell culture supernatant and complex biological fluids. Obtaining a good recovery yield and preserving physical characteristics is critical for the diagnostic and therapeutic use of EVs. The separation of a single class of EVs, such as exosomes, is complex because blood and cell culture media contain many nanoparticles in the same size range. Methods that exploit immunoaffinity capture provide high-purity samples and overcome the issues of currently used separation methods. However, the release of captured nanovesicles usually requires harsh conditions that hinder their use in certain types of downstream analysis. A novel capture and release approach for small extracellular vesicles (sEVs) is presented based on DNA-directed immobilization of antiCD63 antibody. The flexible DNA linker increases the capture efficiency and allows for releasing EVs by exploiting the endonuclease activity of DNAse I. This separation protocol works under mild conditions, enabling the release of vesicles suitable for analysis by imaging techniques. In this study, sEVs recovered from plasma were characterized by established techniques for EV analysis, including nanoparticle tracking and transmission electron microscopy.


Assuntos
Exossomos , Vesículas Extracelulares , Nanopartículas , Sistemas de Liberação de Medicamentos , Fenômenos Magnéticos
17.
Cells ; 10(1)2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374685

RESUMO

The biological relevance of extracellular vesicles (EV) released in an ischemia/reperfusion setting is still unclear. We hypothesized that the inflammatory microenvironment prevents cardioprotection mediated by endothelial cell (EC)-derived extracellular vesicles. The effects of naïve EC-derived EV (eEV) or eEV released in response to interleukin-3 (IL-3) (eEV-IL-3) were evaluated in cardiomyoblasts (H9c2) and rat hearts. In transwell assay, eEV protected the H9c2 exposed to hypoxia/reoxygenation (H/R) more efficiently than eEV-IL-3. Conversely, only eEV directly protected H9c2 cells to H/R-induced damage. Consistent with this latter observation, eEV, but not eEV-IL-3, exerted beneficial effects in the whole heart. Protein profiles of eEV and eEV-IL-3, established using label-free mass spectrometry, demonstrated that IL-3 drives changes in eEV-IL-3 protein cargo. Gene ontology analysis revealed that both eEV and eEV-IL-3 were equipped with full cardioprotective machinery, including the Nitric Oxide Signaling in the Cardiovascular System. eEV-IL-3 were also enriched in the endothelial-nitric oxide-synthase (eNOS)-antagonist caveolin-1 and proteins related to the inflammatory response. In vitro and ex vivo experiments demonstrated that a functional Mitogen-Activated Protein Kinase Kinase (MEK1/2)/eNOS/guanylyl-cyclase (GC) pathway is required for eEV-mediated cardioprotection. Consistently, eEV were found enriched in MEK1/2 and able to induce the expression of B-cell-lymphoma-2 (Bcl-2) and the phosphorylation of eNOS in vitro. We conclude that an inflammatory microenvironment containing IL-3 changes the eEV cargo and impairs eEV cardioprotective action.


Assuntos
Vesículas Extracelulares/metabolismo , Interleucina-3/fisiologia , Traumatismo por Reperfusão/metabolismo , Animais , Células Endoteliais , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Mioblastos Cardíacos , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos , Ratos Wistar
18.
Int J Mol Sci ; 21(10)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443642

RESUMO

Cancer incidence and mortality are rapidly growing worldwide. The main risk factors for cancer can be associated with aging as well as the growth of the population and socioeconomic condition. Breast cancer, a crucial public health problem, is the second cause of death among women. About 70% of patients with advanced breast cancer have bone metastases. In bone metastasis, cancer cells and osteoclasts form a vicious cycle: cancer cells promote osteoclast differentiation and activation that, in turn, induce cancer cell seeding and proliferation in the bone. Growing evidence shows that extracellular vesicles (EVs) play a key role in carcinogenesis, proliferation, pre-metastatic niche formation, angiogenesis, metastasis, and chemoresistance in several tumors, such as breast, lung, prostate, and liver cancer. Here, we discuss the role of EVs released by breast cancer cells, focusing on bone metastasis induction and their clinical implications as biomarkers.


Assuntos
Biomarcadores Tumorais , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Vesículas Extracelulares , Neoplasias Ósseas/fisiopatologia , Feminino , Humanos
19.
Cancer Cell Int ; 20: 167, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435158

RESUMO

BACKGROUND: Cyclooxygenase-2 (COX-2), an inflammation-associated enzyme, has been implicated in tumorigenesis and progression of glioblastoma (GBM). The poor survival of GBM was mainly associated with the presence of glioma stem cells (GSC) and the markedly inflammatory microenvironment. To further explore the involvement of COX-2 in glioma biology, the effects of NS398, a selective COX-2 inhibitor, were evaluated on GSC derived from COX-2 expressing GBM cell lines, i.e., U87MG and T98G, in terms of neurospheres' growth, autophagy, and extracellular vesicle (EV) release. METHODS: Neurospheres' growth and morphology were evaluated by optical and scanning electron microscopy. Autophagy was measured by staining acidic vesicular organelles. Extracellular vesicles (EV), released from neurospheres, were analyzed by transmission electron microscopy. The autophagic proteins Beclin-1 and LC3B, as well as the EV markers CD63 and CD81, were analyzed by western blotting. The scratch assay test was used to evaluate the NS398 influence on GBM cell migration. RESULTS: Both cell lines were strongly influenced by NS398 exposure, as showed by morphological changes, reduced growth rate, and appearance of autophagy. Furthermore, the inhibitor led to a functional change of EV released by neurospheres. Indeed, EV secreted by NS398-treated GSC, but not those from control cells, were able to significantly inhibit adherent U87MG and T98G cell migration and induced autophagy in recipient cells, thus leading to effects quite similar to those directly caused by NS398 in the same cells. CONCLUSION: Despite the intrinsic diversity and individual genetic features of U87MG and T98G, comparable effects were exerted by the COX-2 inhibitor NS398 on both GBM cell lines. Overall, our findings support the crucial role of the inflammatory-associated COX-2/PGE2 system in glioma and glioma stem cell biology.

20.
Biomed Res Int ; 2020: 6093974, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34368344

RESUMO

The ability of a collagen-based matrix to support cell proliferation, migration, and infiltration has been reported; however, the direct effect of an aqueous collagen suspension on cell cultures has not been studied yet. In this work, the effects of a high-concentration aqueous suspension of a micronized type I equine collagen (EC-I) have been evaluated on a normal mouse fibroblast cell line. Immunofluorescence analysis showed the ability of EC-I to induce a significant increase of type I and III collagen levels, parallel with overexpression of crucial proteins in collagen biosynthesis, maturation, and secretion, prolyl 4-hydroxylase (P4H) and heat shock protein 47 (HSP47), as demonstrated by western blot experiments. The treatment led, also, to an increase of α-smooth muscle actin (α-SMA) expression, evaluated through western blot analysis, and cytoskeletal reorganization, as assessed by phalloidin staining. Moreover, scanning electron microscopy analysis highlighted the appearance of plasma membrane extensions and blebbing of extracellular vesicles. Altogether, these results strongly suggest that an aqueous collagen type I suspension is able to induce fibroblast myodifferentiation. Moreover, our findings also support in vitro models as a useful tool to evaluate the effects of a collagen suspension and understand the molecular signaling pathways possibly involved in the effects observed following collagen treatment in vivo.


Assuntos
Diferenciação Celular , Colágeno Tipo I/química , Fibroblastos/metabolismo , Modelos Biológicos , Actinas/biossíntese , Animais , Antígenos de Diferenciação/biossíntese , Proteínas de Choque Térmico HSP47/biossíntese , Cavalos , Camundongos , Células NIH 3T3 , Prolil Hidroxilases/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA