Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37461463

RESUMO

Background: Jansen de Vries Syndrome (JdVS) is a rare neurodevelopmental disorder (NDD) caused by gain-of-function (GOF) truncating mutations in PPM1D exons 5 or 6. PPM1D is a serine/threonine phosphatase that plays an important role in the DNA damage response (DDR) by negatively regulating TP53 (P53). JdVS-associated mutations lead to the formation of a truncated PPM1D protein that retains catalytic activity and has a GOF effect because of reduced degradation. Somatic PPM1D exons 5 and 6 truncating mutations are well-established factors in a number of cancers, due to excessive dephosphorylation and reduced function of P53 and other substrates involved in DDR. Children with JdVS have a variety of neurodevelopmental, psychiatric, and physical problems. In addition, a small fraction has acute neuropsychiatric decompensation apparently triggered by infection or severe non-infectious environmental stress factors. Methods: To understand the molecular basis of JdVS, we developed an induced pluripotent stem cell (iPSC) model system. iPSCs heterozygous for the truncating variant (PPM1D+/tr), were made from a patient, and control lines engineered using CRISPR-Cas9 gene editing. Proteomics and phosphoprotemics analyses were carried out on iPSC-derived glutamatergic neurons and microglia from three control and three PPM1D+/tr iPSC lines. We also analyzed the effect of the TLR4 agonist, lipopolysaccharide, to understand how activation of the innate immune system in microglia could account for acute behavioral decompensation. Results: One of the major findings was the downregulation of POGZ in unstimulated microglia. Since loss-of-function variants in the POGZ gene are well-known causes of autism spectrum disorder, the decrease in PPM1D+/tr microglia suggests this plays a role in the neurodevelopmental aspects of JdVS. In addition, neurons, baseline, and LPS-stimulated microglia show marked alterations in the expression of several E3 ubiquitin ligases, most notably UBR4, and regulators of innate immunity, chromatin structure, ErbB signaling, and splicing. In addition, pathway analysis points to overlap with neurodegenerative disorders. Limitations: Owing to the cost and labor-intensive nature of iPSC research, the sample size was small. Conclusions: Our findings provide insight into the molecular basis of JdVS and can be extrapolated to understand neuropsychiatric decompensation that occurs in subgroups of patients with ASD and other NDDs.

2.
Mol Autism ; 9: 44, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30147856

RESUMO

Background: Lowe syndrome (LS) is a rare genetic disorder caused by loss of function mutations in the X-linked gene, OCRL, which codes for inositol polyphosphate 5-phosphatase. LS is characterized by the triad of congenital cataracts, neurodevelopmental impairment (primarily intellectual and developmental disabilities [IDD]), and renal proximal tubular dysfunction. Studies carried out over the years have shown that hypomorphic mutations in OCRL adversely affect endosome recycling and actin polymerization in kidney cells and patient-derived fibroblasts. The renal problem has been traced to an impaired recycling of megalin, a multi-ligand receptor that plays a key role in the reuptake of lipoproteins, amino acids, vitamin-binding proteins, and hormones. However, the neurodevelopmental aspects of the disorder have been difficult to study because the mouse knockout (KO) model does not display LS-related phenotypes. Fortunately, the discovery of induced pluripotent stem (iPS) cells has provided an opportunity to grow patient-specific neurons, which can be used to model neurodevelopmental disorders in vitro, as demonstrated in the many studies that have been published in the past few years in autism spectrum disorders (ASD), schizophrenia (SZ), bipolar disorder (BD), and IDD. Methods: We now report the first findings in neurons and neural progenitor cells (NPCs) generated from iPS cells derived from patients with LS and their typically developing male siblings, as well as an isogenic line in which the OCRL gene has been incapacitated by a null mutation generated using CRISPR-Cas9 gene editing. Results: We show that neuronal cells derived from patient-specific iPS cells containing hypomorphic variants are deficient in their capacity to produce F-filamentous actin (F-actin) fibers. Abnormalities were also found in the expression of WAVE-1, a component of the WAVE regulatory complex (WRC) that regulates actin polymerization. Curiously, neuronal cells carrying the engineered OCRL null mutation, in which OCRL protein is not expressed, did not show similar defects in F-actin and WAVE-1 expression. This is similar to the apparent lack of a phenotype in the mouse Ocrl KO model, and suggests that in the complete absence of OCRL protein, as opposed to producing a dysfunctional protein, as seen with the hypomorphic variants, there is partial compensation for the F-actin/WAVE-1 regulating function of OCRL. Conclusions: Alterations in F-actin polymerization and WRC have been found in a number of genetic subgroups of IDD and ASD. Thus, LS, a very rare genetic condition, is linked to a more expansive family of genes responsible for neurodevelopmental disorders that have shared pathogenic features.


Assuntos
Actinas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Biológicos , Neurônios/metabolismo , Síndrome Oculocerebrorrenal/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Adolescente , Adulto , Células Cultivadas , Humanos , Masculino , Polimerização , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA