RESUMO
The V1a receptor is a major contributor in mediating the social and emotional effects of arginine-vasopressin (AVP); therefore it represents a promising target in the treatment of several neuropsychiatric conditions. The aim of this research was to design and synthesize novel and selective V1a antagonists with improved in vitro and in vivo profiles. Through optimization and detailed SAR studies, we developed low nanomolar antagonists, and further characterizations led to the discovery of the clinical candidate compound 43 (RGH-122). The CNS activity of the compound was determined in a 3-chamber social preference test of autism in which RGH-122 successfully enhanced social preference with the lowest effective dose of 1.5 mg/kg.
Assuntos
Arginina Vasopressina , Receptores de Vasopressinas , Arginina Vasopressina/farmacologia , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Antagonistas dos Receptores de Hormônios Antidiuréticos/uso terapêuticoRESUMO
A new class of selective vasopressin receptor 1A (V1A) antagonists was identified, where "methyl-scan" was performed around the benzene ring of the 5-hydroxy-triazolobenzazepine core. This led to the synthesis of two 10-methyl derivatives, each possessing a chiral axis and a stereogenic center. The four atropisomeric stereoisomers (involving two enantiomer pairs and atropisomeric diastereomers) could be successfully isolated and spectroscopically characterized. According to the in vitro pharmacological profiles of the compounds, the human V1A receptor has a strong preference toward the isomers having an aR axial chirality, the most active isomer being the aR,5S isomer. Furthermore, the structure-activity relationships obtained for the isomers and for the newly synthesized analogues could be tentatively explained by an in silico study.
Assuntos
Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Benzazepinas/farmacologia , Antagonistas dos Receptores de Hormônios Antidiuréticos/síntese química , Antagonistas dos Receptores de Hormônios Antidiuréticos/química , Benzazepinas/síntese química , Benzazepinas/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Receptores de Vasopressinas , Estereoisomerismo , Relação Estrutura-AtividadeRESUMO
Autism spectrum disorder is a neurodevelopmental disease with increasing occurrence. Recent studies focus on the development of novel V1A receptor antagonists which can influence the core symptoms of autism through the AVP pathway. In this study, we describe the synthesis of new heterocyclic ring systems. These are a novel class of brain-penetrating V1A antagonists with improved metabolic stability and in vivo potency. The efficacy of the compounds was strongly influenced by the position of the chlorine atom, suggesting halogen bond formation between the ligands and the V1A receptor.
Assuntos
Transtorno do Espectro Autista , Receptores de Vasopressinas , Arginina Vasopressina , Humanos , LigantesRESUMO
Receptor function is traditionally controlled from the orthosteric binding site of G-protein coupled receptors. Here, we show that the functional activity and signalling of human dopamine D2 and D3 receptor ligands can be fine-tuned from the extracellular secondary binding pocket (SBP) located far from the signalling interface suggesting optimization of the SBP binding part of bitopic ligands might be a useful strategy to develop GPCR ligands with designed functional and signalling profile.
Assuntos
Antipsicóticos/farmacologia , Piperazinas/farmacologia , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D3/agonistas , Antipsicóticos/síntese química , Antipsicóticos/química , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Piperazinas/síntese química , Piperazinas/química , Transdução de Sinais/efeitos dos fármacosRESUMO
Solid preclinical evidence links vasopressin to social behavior in animals, so, extensive work has been initiated to find new vasopressin V1a receptor antagonists which can improve deteriorated social behavior in humans and can treat the core symptoms of autistic behavior, as well. Our aim was to identify new chemical entities with antagonizing effects on vasopressin V1a receptors. Starting from a moderately potent HTS hit (7), we identified a molecule (49) having nanomolar binding strength and functional activity, which is in the same range as the potency of clinically tested V1a antagonists.
Assuntos
Antagonistas dos Receptores de Hormônios Antidiuréticos/síntese química , Receptores de Vasopressinas/metabolismo , Transtornos do Comportamento Social/tratamento farmacológico , Ureia/síntese química , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , Concentração Inibidora 50 , Piperazina/química , Ligação Proteica , Piridinas/química , Quinolinas/química , Relação Estrutura-Atividade , Ureia/farmacologiaRESUMO
Solid preclinical evidence links vasopressin to social behavior in animals, so, extensive work has been initiated to find new vasopressin V1a receptor antagonists which can improve deteriorated social behavior in humans and can treat the core symptoms of autistic behavior, as well. Our aim was to identify new chemical entities with antagonizing effects on vasopressin V1a receptors. Continuing our previous work, we found an in vitro and in vivo orally active V1a selective antagonist molecule (40) among [1,2,4]triazolo[4,3-a][1]benzazepines.