Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 15(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37299425

RESUMO

N-acetylcysteine (NAC) is used as a sports supplement for its ability to modulate exercise-induced oxidative damage through its antioxidant actions and maintenance of glutathione homeostasis, positioning NAC as a strategy to improve physical performance. We aimed to evaluate the current evidence on the benefits of NAC supplementation on physical performance and laboratory biomarkers in adult men. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we systematically reviewed studies indexed in the Web of Science, Scopus, and PubMed to assess the effects of NAC on physical performance, laboratory biomarkers, and adverse effects in adult men. Original articles published up to 30 April 2023 with a controlled trial design comparing NAC supplementation with a control group were included. The modified McMaster Critical Review Form for Quantitative Studies was used as an assessment tool and the Cochrane Risk of Bias was applied. Of the 777 records identified in the search, 16 studies met the inclusion and exclusion criteria. Overall, most of the trials reported beneficial effects of NAC supplementation and no serious adverse events were reported. Participants supplemented with NAC showed significant improvements in exercise performance, antioxidant capacity, and glutathione homeostasis. However, there was no clear evidence of beneficial effects of NAC supplementation on haematological markers, inflammatory response, and muscle behaviour. NAC supplementation appears to be safe and may regulate glutathione homeostasis, have antioxidant effects, and improve exercise performance. However, further studies are needed to clarify the relevance of its use.


Assuntos
Acetilcisteína , Antioxidantes , Masculino , Adulto , Humanos , Acetilcisteína/farmacologia , Suplementos Nutricionais , Glutationa , Desempenho Físico Funcional , Biomarcadores , Ensaios Clínicos Controlados Aleatórios como Assunto
2.
Artigo em Inglês | MEDLINE | ID: mdl-36498228

RESUMO

Tribulus terrestris L. (TT) ingredients have anti-inflammatory and antioxidant activities, but their effects on exercise-induced muscle damage (EIMD) in trained athletes are uncertain. The purpose of this single-blind placebo-controlled trial, in accordance with CONSORT guidelines, was to examine the effect of 6 weeks of TT supplementation on muscle metabolism, inflammation biomarkers, and oxidant status. Thirty trained male CrossFit® athletes were randomly assigned to be supplemented with 770 mg/day of TT (intervention group (IG)) or receive a placebo daily (control group (CG)) for 6 weeks. Muscle damage enzymes, inflammation biomarkers, and Total Antioxidant Status (TAS) were assessed at baseline (T1), 21 days after baseline (T2), and after 42 days (T3). Grace, a Workout of the Day, was measured in T1 and T3. Statistical significance (p < 0.05) was found between IG and CG in Lactate Dehydrogenase (LDH), C-reactive protein (CRP), and TAS levels at the end of the follow-up. Furthermore, TAS levels were significantly (p < 0.05) lower at T2 and T3 relative to baseline in the IG, also LDH and CRP increased significantly (p < 0.05) at T2 and T3 relative to baseline in the CG. No significant (p > 0.05) decreases in muscle damage or inflammation biomarkers were observed, although a slight downward trend was observed after 6 weeks for supplemented athletes. TT supplementation could attenuate the CrossFit® training program-induced oxidative stress, muscle damage, and inflammation which could be due to the natural antioxidant and anti-inflammatory properties of TT.


Assuntos
Suplementos Nutricionais , Músculos , Preparações de Plantas , Tribulus , Humanos , Masculino , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Biomarcadores , Inflamação/tratamento farmacológico , L-Lactato Desidrogenase , Músculos/metabolismo , Estresse Oxidativo , Método Simples-Cego , Atletas
3.
Artigo em Inglês | MEDLINE | ID: mdl-35897470

RESUMO

Athletes incorporate altitude training programs into their conventional training to improve their performance. The purpose of this study was to determine the effects of an 8-week altitude training program that was supplemented with intermittent hypoxic training (IHE) on the blood biomarkers, sports performance, and safety profiles of elite athletes. In a single-blind randomized clinical trial that followed the CONSORT recommendations, 24 male athletes were randomized to an IHE group (HA, n = 12) or an intermittent normoxia group (NA, n = 12). The IHE consisted of 5-min cycles of hypoxia−normoxia with an FIO2 of between 10−13% for 90 min every day for 8 weeks. Hematological (red blood cells, hemoglobin, hematocrit, hematocrit, reticulated hemoglobin, reticulocytes, and erythropoietin), immunological (leukocytes, monocytes, and lymphocytes), and renal (urea, creatinine, glomerular filtrate, and total protein) biomarkers were assessed at the baseline (T1), day 28 (T2), and day 56 (T3). Sports performance was evaluated at T1 and T3 by measuring quadriceps strength and using three-time trials over the distances of 60, 400, and 1000 m on an athletics track. Statistically significant increases (p < 0.05) in erythropoietin, reticulocytes, hemoglobin, and reticulocyte hemoglobin were observed in the HA group at T3 with respect to T1 and the NA group. In addition, statistically significant improvements (p < 0.05) were achieved in all performance tests. No variations were observed in the immunological or renal biomarkers. The athletes who were living and training at 1065 m and were supplemented with IHE produced significant improvements in their hematological behavior and sports performance with optimal safety profiles.


Assuntos
Desempenho Atlético , Eritropoetina , Exercício Físico , Altitude , Atletas , Biomarcadores/sangue , Exercício Físico/fisiologia , Hemoglobinas/metabolismo , Humanos , Hipóxia , Masculino , Consumo de Oxigênio , Aptidão Física , Método Simples-Cego
4.
Sensors (Basel) ; 21(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34073126

RESUMO

This paper presents a navigation strategy for a platoon of n non-holonomic mobile robots with a time-varying spacing policy between each pair of successive robots at the platoon, such that a safe trailing distance is maintained at any speed, avoiding the robots getting too close to each other. It is intended that all the vehicles in the formation follow the trajectory described by the leader robot, which is generated by bounded input velocities. To establish a chain formation among the vehicles, it is required that, for each pair of successive vehicles, the (i+1)-th one follows the trajectory executed by the former i-th one, with a delay of τ(t) units of time. An observer is proposed to estimate the trajectory, velocities, and positions of the i-th vehicle, delayed τ(t) units of time, consequently generating the desired path for the (i+1)-th vehicle, avoiding numerical approximations of the velocities, rendering robustness against noise and corrupted or missing data as well as to external disturbances. Besides the time-varying gap, a constant-time gap is used to get a secure trailing distance between each two successive robots. The presented platoon formation strategy is analyzed and proven by using Lyapunov theory, concluding asymptotic convergence for the posture tracking between the (i+1)-th robot and the virtual reference provided by the observer that corresponds to the i-th robot. The strategy is evaluated by numerical simulations and real-time experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA