Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Hyg Environ Health ; 259: 114378, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631089

RESUMO

Phthalates and the substitute plasticizer DINCH belong to the first group of priority substances investigated by the European Human Biomonitoring Initiative (HBM4EU) to answer policy-relevant questions and safeguard an efficient science-to-policy transfer of results. Human internal exposure levels were assessed using two data sets from all European regions and Israel. The first collated existing human biomonitoring (HBM) data (2005-2019). The second consisted of new data generated in the harmonized "HBM4EU Aligned Studies" (2014-2021) on children and teenagers for the ten most relevant phthalates and DINCH, accompanied by a quality assurance/quality control (QA/QC) program for 17 urinary exposure biomarkers. Exposures differed between countries, European regions, age groups and educational levels. Toxicologically derived Human biomonitoring guidance values (HBM-GVs) were exceeded in up to 5% of the participants of the HBM4EU Aligned Studies. A mixture risk assessment (MRA) including five reprotoxic phthalates (DEHP, DnBP, DiBP, BBzP, DiNP) revealed that for about 17% of the children and teenagers, health risks cannot be excluded. Concern about male reproductive health emphasized the need to include other anti-androgenic substances for MRA. Contaminated food and the use of personal care products were identified as relevant exposure determinants paving the way for new regulatory measures. Time trend analyses verified the efficacy of regulations: especially for the highly regulated phthalates exposure dropped significantly, while levels of the substitutes DINCH and DEHTP increased. The HBM4EU e-waste study, however, suggests that workers involved in e-waste management may be exposed to higher levels of restricted phthalates. Exposure-effect association studies indicated the relevance of a range of endpoints. A set of HBM indicators was derived to facilitate and accelerate science-to-policy transfer. Result indicators allow different groups and regions to be easily compared. Impact indicators allow health risks to be directly interpreted. The presented results enable successful science-to-policy transfer and support timely and targeted policy measures.


Assuntos
Monitoramento Biológico , Poluentes Ambientais , Ácidos Ftálicos , Plastificantes , Humanos , Ácidos Ftálicos/urina , Plastificantes/análise , Europa (Continente) , Poluentes Ambientais/urina , Adolescente , Criança , Exposição Ambiental/análise , Masculino , Medição de Risco , Feminino , Adulto , Monitoramento Ambiental/métodos
2.
J Expo Sci Environ Epidemiol ; 33(2): 244-254, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35513587

RESUMO

BACKGROUND: Many phthalates are environmental pollutants and toxic to humans. Following phthalate regulations, human exposure to phthalates has globally decreased with time in European countries, the US and Korea. Conversely, exposure to their substitutes DEHT and/or DINCH has increased. In other countries, including China, little is known on the time-trends in human exposure to these plasticizers. OBJECTIVE: We aimed to estimate time-trends in the urinary concentrations of phthalates, DEHT, and DINCH metabolites, in general population from non-European countries, in the last decade. METHODS: We compiled human biomonitoring (HBM) data from 123 studies worldwide in a database termed "PhthaLit". We analyzed time-trends in the urinary concentrations of the excreted metabolites of various phthalates as well as DEHT and DINCH per metabolite, age group, and country/region, in 2009-2019. Additionally, we compared urinary metabolites levels between continents. RESULTS: We found solid time-trends in adults and/or children from the US, Canada, China and Taiwan. DEHP metabolites decreased in the US and Canada. Conversely in Asia, 5oxo- and 5OH-MEHP (DEHP metabolites) increased in Chinese children. For low-weight phthalates, the trends showed a mixed picture between metabolites and countries. Notably, MnBP (a DnBP metabolite) increased in China. The phthalate substitutes DEHT and DINCH markedly increased in the US. SIGNIFICANCE: We addressed the major question of time-trends in human exposure to phthalates and their substitutes and compared the results in different countries worldwide. IMPACT: Phthalates account for more than 50% of the plasticizer world market. Because of their toxicity, some phthalates have been regulated. In turn, the consumption of non-phthalate substitutes, such as DEHT and DINCH, is growing. Currently, phthalates and their substitutes show high detection percentages in human urine. Concerning time-trends, several studies, mainly in Europe, show a global decrease in phthalate exposure, and an increase in the exposure to phthalate substitutes in the last decade. In this study, we address the important question of time-trends in human exposure to phthalates and their substitutes and compare the results in different countries worldwide.


Assuntos
Dietilexilftalato , Poluentes Ambientais , Ácidos Ftálicos , Adulto , Criança , Humanos , Ácidos Ftálicos/urina , Poluentes Ambientais/urina , Plastificantes/análise , Plastificantes/metabolismo , América do Norte , Exposição Ambiental/análise
3.
Environ Res ; 213: 113675, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35700762

RESUMO

Humans are widely exposed to phthalates and their novel substitutes, and considering the negative health effects associated with some phthalates, it is crucial to understand population levels and exposure determinants. This study is focused on 300 urine samples from teenagers (aged 12-17) and 300 from young adults (aged 18-37) living in Czechia collected in 2019 and 2020 to assess 17 plasticizer metabolites as biomarkers of exposure. We identified widespread phthalate exposure in the study population. The diethyl phthalate metabolite monoethyl phthalate (MEP) and three di (2-ethylhexyl) phthalate metabolites were detected in the urine of >99% of study participants. The highest median concentrations were found for metabolites of low-molecular-weight (LMW) phthalates: mono-n-butyl phthalate (MnBP), monoisobutyl phthalate (MiBP) and MEP (60.7; 52.6 and 17.6 µg/L in young adults). 1,2-cyclohexanedicarboxylic acid diisononyl ester (DINCH) metabolites were present in 68.2% of the samples with a median of 1.24 µg/L for both cohorts. Concentrations of MnBP and MiBP were similar to other European populations, but 5-6 times higher than in populations in North America. We also observed large variability in phthalate exposures within the study population, with 2-3 orders of magnitude differences in urinary metabolites between high and low exposed individuals. The concentrations varied with season, gender, age, and lifestyle factors. A relationship was found between high levels of MEP and high overall use of personal care products (PCPs). Cluster analysis suggested that phthalate exposures depend on season and multiple lifestyle factors, like time spent indoors and use of PCPs, which combine to lead to the observed widespread presence of phthalate metabolites in both study populations. Participants who spent more time indoors, particularly noticeably during colder months, had higher levels of high-molecular weight phthalate metabolites, whereas participants with higher PCP use, particularly women, tended to have higher concentration of LMW phthalate metabolites.


Assuntos
Cosméticos , Dietilexilftalato , Poluentes Ambientais , Ácidos Ftálicos , Adolescente , Cosméticos/análise , Dietilexilftalato/urina , Exposição Ambiental/análise , Poluentes Ambientais/urina , Feminino , Humanos , Estilo de Vida , Ácidos Ftálicos/urina , Adulto Jovem
4.
Sci Total Environ ; 830: 154734, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35337869

RESUMO

Characterization of PCB exposure sources for vulnerable population groups is essential to minimize the health effects of PCB exposure. At the same time, it is important to consolidate the knowledge on threshold intakes of PCBs for infants and toddlers to prevent health effects. We estimated total PCB concentrations from birth to 2 years of age in children from Slovak and Czech populations, which continue to have high PCB concentrations in breast milk. Using a pharmacokinetic (PK) model, we characterized dominant PCB exposure sources and estimated new threshold estimated daily intakes (TEDI) (above which adverse effects cannot be excluded) for postnatal PCB exposure in infants and toddlers. In the PK model, concentrations of seven indicator PCBs in breast milk and cord blood samples from 291 mother-child pairs from the Slovak birth cohort, and 396 breast milk samples from Czech mothers we used, together with their physiological characteristics and PCB concentrations from other exposure sources (food, dust, air). The estimated total PCB concentrations in children's blood at different ages were compared with threshold PCB concentrations of 500, 700 and 1000 ng·glipid-1 in serum proposed by the French Agency for Food, Environmental and Occupational Health & Safety (ANSES) and the German Environment Agency (UBA), above which possible adverse health effects may be expected. We estimated that up to 20.6% of Slovak children and up to 45.7% of Czech children at two years of age exceeded the threshold value of 700 ng·glipid-1 in blood. Mean TEDIs leading to values of 500 ng·glipid-1 in blood for children up to two years ranged between 110 and 220 ng·kg-1·bw·day-1, varying according to breastfeeding duration. Breast milk and prenatal exposure contributed to 71%-85% of PCBs exposure at two years of age. In contrast, the contributions of PCBs from dust and indoor air were negligible.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Poluentes Ambientais , Bifenilos Policlorados , Aleitamento Materno , Pré-Escolar , Poeira , Poluentes Ambientais/análise , Feminino , Humanos , Lactente , Lipídeos , Leite Humano/química , Bifenilos Policlorados/análise , Gravidez
5.
Sci Total Environ ; 690: 388-399, 2019 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-31299572

RESUMO

In this study we reconstruct the long-term exposure of Czech mothers to polychlorinated biphenyls (PCBs) and determine the causes of high contamination of breast milk by indicator PCBs (iPCBs). A data set containing information from more than 1000 primiparous women from the Czech Republic was used, including iPCB concentrations in breast milk, individual physiology and living characteristics. The time series of PCB intakes for the whole period from the beginning of PCB production in 1958 until 2011 were reconstructed. We estimated the individual lifetime exposure of mothers for all iPCBs, i.e. congeners 28, 52, 101, 118, 138, 153 and 180, using a physiologically based pharmacokinetic (PBPK) model. Various model scenarios were investigated to determine the influence of physiology, age at delivery, past dietary exposure, and food composition on concentrations in breast milk for all iPCBs. The highest contributions to the presence of iPCBs in breast milk were observed for food composition. The main factor determining the concentration of higher-chlorinated PCBs (138, 153 and 180) was past exposure. The most important parameter for identification of children's postnatal exposure through breast milk was the time-span from the maximum of the exposure peak to the birth of the child. The current concentrations of iPCBs in breast milk in the Czech population are still high because the maximum of the exposure peak occurred more than 10 years later than in other European countries and was very broad, e.g. covered more than 10 years.


Assuntos
Poluentes Ambientais/metabolismo , Exposição Materna/estatística & dados numéricos , Bifenilos Policlorados/metabolismo , Adulto , República Tcheca , Exposição Dietética/estatística & dados numéricos , Feminino , Humanos , Leite Humano
6.
Drug Metab Rev ; 51(3): 314-329, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31116073

RESUMO

Phthalates are a class of compounds that have been extensively used as plasticizers in different applications. Several phthalates have been recognized as substances of very high concern (SVHCs) in the EU, because of their toxicity for reproduction. However, high amounts of other phthalates are still produced and imported in the European Economic Area. In China and the US, recent studies show increasing concentrations of several phthalates in the air and in human urine, respectively. The understanding of phthalate absorption, distribution, metabolism, and elimination ('pharmacokinetics') in the organism is still limited. Specifically, phthalate partitioning among tissues is insufficiently understood. Here, we estimate partition coefficient (PC) values for different phthalates by using five algorithms and compare them to experimental (in-vivo and in-vitro) PC values. In addition, we review all pharmacokinetic steps for phthalates in human and rat, based on data from 133 peer-reviewed publications. We analyze the factors that determine phthalate partitioning and pharmacokinetics. Four processes are particularly relevant to phthalate distribution: protein binding, ionization, passive partitioning, and metabolism in different tissues. The interplay of these processes needs to be better represented in methods for determining the PC values of phthalates. The hydrophobicity of phthalates affects all pharmacokinetic steps. The exposure route has an influence on specific steps of phthalate pharmacokinetics but generally does not affect the pattern of metabolites in urine. The age of the organism has an influence on phthalate metabolism. More studies on the protein-bound fraction of phthalates in plasma and pharmacokinetic studies following inhalation and dermal exposure are desirable.


Assuntos
Ácidos Ftálicos/farmacocinética , Animais , Humanos , Ácidos Ftálicos/química , Plastificantes/química , Plastificantes/farmacocinética , Ratos , Distribuição Tecidual
7.
Environ Res ; 172: 216-230, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30818231

RESUMO

Given the opportunities provided by internal dosimetry modelling in the interpretation of human biomonitoring (HBM) data, the assessment of the links between exposure to chemicals and observed HBM data can be effectively supported by PBTK modelling. This paper gives a comprehensive review of available human PBTK models for compounds selected as a priority by the European Human Biomonitoring Initiative (HBM4EU). We highlight their advantages and deficiencies and suggest steps for advanced internal dose modelling. The review of the available PBTK models highlighted the conceptual differences between older models compared to the ones developed recently, reflecting commensurate differences in research questions. Due to the lack of coordinated strategies for deriving useful biomonitoring data for toxicokinetic properties, significant problems in model parameterisation still remain; these are further increased by the lack of human toxicokinetic data due to ethics issues. Finally, questions arise as well as to the extent they are really representative of interindividual variability. QSARs for toxicokinetic properties is a complementary approach for PBTK model parameterisation, especially for data poor chemicals. This approach could be expanded to model chemico-biological interactions such as intestinal absorption and renal clearance; this could serve the development of more complex generic PBTK models that could be applied to newly derived chemicals. Another gap identified is the framework for mixture interaction terms among compounds that could eventually interact in metabolism. From the review it was concluded that efforts should be shifted toward the development of generic multi-compartmental and multi-route models, supported by targeted biomonitoring coupled with parameterisation by both QSAR approach and experimental (in-vivo and in-vitro) data for newly developed and data poor compounds.


Assuntos
Monitoramento Biológico , Modelos Biológicos , Toxicocinética , Humanos , Relação Quantitativa Estrutura-Atividade
8.
Chemosphere ; 178: 424-431, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28342374

RESUMO

The aim of the current study was to describe the fate of ingested α-hexabromocyclododecane (α-HBCDD) in fast-growing (FG) and slow-growing (SG) broilers, through an exposure to a dietary concentration of 50 ng α-HBCDD g-1 feed during 42 and 84 days, respectively. Depuration parameters were assessed in SG broilers successively exposed during 42 days and depurated during 42 days. At market age, SG broilers had ingested 42% more feed than FG broilers, while their body weight gain per g of feed ingested was 34% lower. No isomerization of α- to ß- or γ-HBCDD forms occurred, while OH-HBCDD was identified as a product of α-HBCDD metabolism. Irrespective of the strain, abdominal fat displayed the highest α-HBCDD concentration on a lipid weight basis, followed leg muscles and then breast muscle, liver and plasma. The accumulation ratios of α-HBCDD were slightly higher in SG (6.7, 2.1, 2.6 and 9.9 in leg muscles, breast muscle, liver and abdominal fat, respectively) than in FG broilers (5.2, 2.2, 1.1 and 8.4, respectively). The elimination half-lives in SG broilers were 20, 12 and 19 d in leg muscles, breast muscle and abdominal fat, respectively, to which dilution through growth contributed for around 50%. The overall assimilation efficiency of α-HBCDD was estimated at 58 and 50% in FG and SG broilers, respectively, while 22 and 17% of α-HBCDD ingested were estimated to be eliminated in excreta as metabolites.


Assuntos
Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Retardadores de Chama/metabolismo , Hidrocarbonetos Bromados/metabolismo , Animais , Peso Corporal , Dieta , Masculino , Distribuição Tecidual
9.
J Agric Food Chem ; 64(10): 2112-9, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26889954

RESUMO

The aim of the current study was to describe the fate of ingested α-hexabromocyclododecane (α-HBCDD) in laying hens. Individuals were exposed to two dietary concentrations of α-HBCDD (50 and 5 ng g(-1) feed) for 18 or 11 weeks followed by a 7-week decontamination period. The results show that no isomerization of α- to ß- or γ-HBCDD forms occurred, whereas OH-HBCDD was identified as a product of α-HBCDD metabolism. Irrespective of the level of feed contamination, estimates of steady-state accumulation ratios were 5.2, 3.6, and 9.2 and half-lives were estimated at 17.4, 22.8, and 35.3 days in egg yolk, liver tissue, and abdominal fat, respectively. The steady-state carry-over rate to eggs was 22.9%. Thus, α-HBCDD ingested by laying hens is readily transferred to eggs and significantly accumulates in adipose tissue.


Assuntos
Galinhas/metabolismo , Ovos/análise , Hidrocarbonetos Bromados/metabolismo , Ração Animal/análise , Animais , Gema de Ovo/química , Gema de Ovo/metabolismo , Feminino , Contaminação de Alimentos/análise , Hidrocarbonetos Bromados/análise , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA