Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673813

RESUMO

We explored the metabolic integration of Blattella germanica and its obligate endosymbiont Blattabacterium cuenoti by the transcriptomic analysis of the fat body of quasi-aposymbiotic cockroaches, where the endosymbionts were almost entirely removed with rifampicin. Fat bodies from quasi-aposymbiotic insects displayed large differences in gene expression compared to controls. In quasi-aposymbionts, the metabolism of phenylalanine and tyrosine involved in cuticle sclerotization and pigmentation increased drastically to compensate for the deficiency in the biosynthesis of these amino acids by the endosymbionts. On the other hand, the uricolytic pathway and the biosynthesis of uric acid were severely decreased, probably because the reduced population of endosymbionts was unable to metabolize urea to ammonia. Metabolite transporters that could be involved in the endosymbiosis process were identified. Immune system and antimicrobial peptide (AMP) gene expression was also reduced in quasi-aposymbionts, genes encoding peptidoglycan-recognition proteins, which may provide clues for the maintenance of the symbiotic relationship, as well as three AMP genes whose involvement in the symbiotic relationship will require additional analysis. Finally, a search for AMP-like factors that could be involved in controlling the endosymbiont identified two orphan genes encoding proteins smaller than 200 amino acids underexpressed in quasi-aposymbionts, suggesting a role in the host-endosymbiont relationship.


Assuntos
Corpo Adiposo , Simbiose , Transcriptoma , Simbiose/genética , Animais , Corpo Adiposo/metabolismo , Feminino , Perfilação da Expressão Gênica , Sistema Imunitário/metabolismo , Bacteroidetes/genética , Bacteroidetes/metabolismo , Peptídeos Antimicrobianos/metabolismo , Peptídeos Antimicrobianos/genética
2.
Life (Basel) ; 14(1)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276282

RESUMO

Cockroaches harbor two coexisting symbiotic systems: the obligate endosymbiont Blattabacterium cuenotii, and a complex gut microbiota. Blattabacterium is the only bacterium present in the eggs, as the gut microbiota is acquired by horizontal transmission after hatching, mostly through coprophagy. Blattella germanica, a cosmopolitan omnivorous cockroach living in intimate association with humans, is an appropriate model system for studying whether the gut microbiota is essential for the cockroach's survival, development, or welfare. We obtained a germ-free cockroach population (i.e., containing normal amounts of the endosymbiont, but free of microbes on the insects' surface and digestive tract). Non-significant differences with the controls were detected in most fitness parameters analyzed, except for a slight shortening in the hatching time of the second generation and a reduction in female weight at 10 days after adult ecdysis. The latter is accompanied by a decrease in uric acid reserves. This starvation-like phenotype of germ-free B. germanica suggests that the microbiota is not essential in this species for survival and development throughout its complete life cycle, but it could participate in complementation of host nutrition by helping with food digestion and nutrient absorption.

3.
Biology (Basel) ; 12(7)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37508385

RESUMO

Blattella germanica harbours two cohabiting symbiotic systems: an obligate endosymbiont, Blattabacterium, located inside bacteriocytes and vertically transmitted, which is key in nitrogen metabolism, and abundant and complex gut microbiota acquired horizontally (mainly by coprophagy) that must play an important role in host physiology. In this work, we use rifampicin treatment to deepen the knowledge on the relationship between the host and the two systems. First, we analysed changes in microbiota composition in response to the presence and removal of the antibiotic with and without faeces in one generation. We found that, independently of faeces supply, rifampicin-sensitive bacteria are strongly affected at four days of treatment, and most taxa recover after treatment, although some did not reach control levels. Second, we tried to generate an aposymbiotic population, but individuals that reached the second generation were severely affected and no third generation was possible. Finally, we established a mixed population with quasi-aposymbiotic and control nymphs sharing an environment in a blind experiment. The analysis of the two symbiotic systems in each individual after reaching the adult stage revealed that endosymbiont's load does not affect the composition of the hindgut microbiota, suggesting that there is no interaction between the two symbiotic systems in Blattella germanica.

4.
Rev Esp Salud Publica ; 972023 Mar 02.
Artigo em Espanhol | MEDLINE | ID: mdl-36883556

RESUMO

OBJECTIVE: The presence of Aedes albopictus, of high sanitary and social impact, was first reported in Valencia (Eastern Spain) in 2015. Innovative tools for its control include the use of the endosymbiotic bacterium Wolbachia pipientis. The release of mosquito males infected with the wPip strain, has proven very promising for large-scale Incompatible Insect Technique (IIT) applications. Before this strategy can be implemented in Valencia, it is important to know whether the natural local mosquito populations are Wolbachia-infected and, if so, identifying the infecting strains/supergroups, these being the objectives of the present work. METHODS: Eggs were collected from the 19 districts of the València city between May and October 2019. A total of 50 lab-reared adult Ae. albopictus individuals were processed and analyzed for Wolbachia detection and molecular characterization. These actions took place within the framework of a collaboration established with the Department of Health and Consumer Affairs of the city council of Valencia. Fisher's exact test was used to detect the statistical significance of the differences between groups. RESULTS: Our study revealed that 94% of the analyzed samples were naturally infected with Wolbachia. Both wAlbA and wAlbB supergroups were identified, with most samples (72% of the infected ones) carrying co-infections. CONCLUSIONS: These data provide the first characterization of the Wolbachia presence in natural populations of Ae. albopictus in the Mediterranean area of Spain. This information is relevant to evaluate the potential use of Wolbachia strains in order to achieve the suppression of the Asian tiger mosquito populations through massive release of artificially-infected males.


OBJETIVO: La presencia de Aedes albopictus, de alto impacto sanitario y social, se informó por primera vez en Valencia en 2015. Las herramientas innovadoras para su control incluyen el uso de la bacteria endosimbiótica Wolbachia pipientis. La liberación de mosquitos machos infectados con la cepa wPip ha demostrado ser muy prometedora para aplicar la Técnica de Insectos Incompatibles (IIT) a gran escala. Antes de que esta estrategia pueda implementarse, es importante saber si las poblaciones locales de mosquitos silvestres están infectadas por Wolbachia y, de ser así, identificar las cepas/supergrupos infectantes, siendo estos los objetivos del presente trabajo. METODOS: Se recolectaron huevos de los diecinueve distritos de València entre mayo y octubre de 2019, y se mantuvieron en el laboratorio hasta llegar a adultos. Un total de cincuenta individuos adultos de Ae albopictus fueron procesados y analizados para detectar la presencia de Wolbachia y su caracterización molecular. Estas acciones se enmarcaron en la colaboración establecida con la Concejalía de Salud y Consumo del Ayuntamiento de València. La prueba exacta de Fisher fue utilizada para detectar la significación estadística de las diferencias entre grupos. RESULTADOS: El 94% de las muestras analizadas estaban infectadas de forma natural con Wolbachia. Se identificaron los supergrupos wAlbA y wAlbB, y la mayoría de las muestras (72% de las infectadas) presentaban coinfecciones. CONCLUSIONES: Los datos proporcionan la primera caracterización de la presencia de Wolbachia en poblaciones naturales de Ae. albopictus en el área mediterránea de España. Esta información es relevante para evaluar el potencial uso de cepas de Wolbachia de cara a la supresión de poblaciones de mosquito tigre asiático mediante la liberación masiva de machos infectados artificialmente.


Assuntos
Aedes , Wolbachia , Adulto , Masculino , Animais , Humanos , Controle de Mosquitos , Espanha/epidemiologia
5.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955579

RESUMO

Antimicrobial peptide (AMP) genes, triggered by Toll and IMD pathways, are essential components of the innate immune system in the German cockroach Blattella germanica. Besides their role in killing pathogenic bacteria, AMPs could be involved in controlling its symbiotic systems (endosymbiont and microbiota). We found that the IMD pathway was active in the adult female transcriptomes of six tissues (salivary glands, foregut, midgut, hindgut, Malpighian tubules and fat body) and hemolymph. Total expression of AMP genes was high in hemolymph and salivary glands and much lower in the other sample types. The expression of specific AMP genes was very heterogeneous among sample types. Two genes, defensin_g10 and drosomycin_g5, displayed relevant expression in the seven sample types, although higher in hemolymph. Other genes only displayed high expression in one tissue. Almost no expression of attacin-like and blattellicin genes was observed in any sample type, although some of them were among the genes with the highest expression in adult female whole bodies. The expression of AMP genes in salivary glands could help control pathogens ingested with food and even determine gut microbiota composition. The low expression levels in midgut and hindgut are probably related to the presence of beneficial microbiota. Furthermore, a reduction in the expression of AMP genes in fat body could be the way to prevent damage to the population of the endosymbiont Blattabacterium cuenoti within bacteriocytes.


Assuntos
Blattellidae , Flavobacteriaceae , Animais , Feminino , Peptídeos Antimicrobianos , Blattellidae/genética , Hemolinfa
6.
Life (Basel) ; 12(2)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35207577

RESUMO

Mutualistic stable symbioses are widespread in all groups of eukaryotes, especially in insects, where symbionts have played an essential role in their evolution. Many insects live in obligate relationship with different ecto- and endosymbiotic bacteria, which are needed to maintain their hosts' fitness in their natural environment, to the point of even relying on them for survival. The case of cockroaches (Blattodea) is paradigmatic, as both symbiotic systems coexist in the same organism in two separated compartments: an intracellular endosymbiont (Blattabacterium) inside bacteriocytes located in the fat body, and a rich and complex microbiota in the hindgut. The German cockroach Blattella germanica is a good model for the study of symbiotic interactions, as it can be maintained in the laboratory in controlled populations, allowing the perturbations of the two symbiotic systems in order to study the communication and integration of the tripartite organization of the host-endosymbiont-microbiota, and to evaluate the role of symbiotic antimicrobial peptides (AMPs) in host control over their symbionts. The importance of cockroaches as reservoirs and transmission vectors of antibiotic resistance sequences, and their putative interest to search for AMPs to deal with the problem, is also discussed.

7.
Biology (Basel) ; 10(10)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34681115

RESUMO

Blattella germanica presents a very complex symbiotic system, involving the following two kinds of symbionts: the endosymbiont Blattabacterium and the gut microbiota. Although the role of the endosymbiont has been fully elucidated, the function of the gut microbiota remains unclear. The study of the gut microbiota will benefit from the availability of insects deprived of Blattabacterium. Our goal is to determine the effect of the removal (or, at least, the reduction) of the endosymbiont population on the cockroach's fitness, in a normal gut microbiota community. For this purpose, we treated our cockroach population, over several generations, with rifampicin, an antibiotic that only affects the endosymbiont during its extracellular phase, and decreases its amount in the following generation. As rifampicin also affects gut bacteria that are sensitive to this antibiotic, the treatment was performed during the first 12 days of the adult stage, which is the period when the endosymbiont infects the oocytes and lacks bacteriocyte protection. We found that after this antibiotic treatment, the endosymbiont population remained extremely reduced and only the microbiota was able to recover, although it could not compensate for the endosymbiont role, and the host's fitness was drastically affected. This accomplished reduction, however, is not homogenous and requires further study to develop stable quasi-aposymbiotic cockroaches.

8.
mSystems ; 6(3)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33975971

RESUMO

Cockroaches are intriguing animals with two coexisting symbiotic systems, an endosymbiont in the fat body, involved in nitrogen metabolism, and a gut microbiome whose diversity, complexity, role, and developmental dynamics have not been fully elucidated. In this work, we present a metagenomic approach to study Blattella germanica populations not treated, treated with kanamycin, and recovered after treatment, both naturally and by adding feces to the diet, with the aim of better understanding the structure and function of its gut microbiome along the development as well as the characterization of its resistome.IMPORTANCE For the first time, we analyze the interkingdom hindgut microbiome of this species, including bacteria, fungi, archaea, and viruses. Network analysis reveals putative cooperation between core bacteria that could be key for ecosystem equilibrium. We also show how antibiotic treatments alter microbiota diversity and function, while both features are restored after one untreated generation. Combining data from B. germanica treated with three antibiotics, we have characterized this species' resistome. It includes genes involved in resistance to several broad-spectrum antibiotics frequently used in the clinic. The presence of genetic elements involved in DNA mobilization indicates that they can be transferred among microbiota partners. Therefore, cockroaches can be considered reservoirs of antibiotic resistance genes (ARGs) and potential transmission vectors.

9.
Microorganisms ; 10(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35056527

RESUMO

The filamentous fungus Penicillium chrysogenum (recently reidentified as Penicillium rubens) is used in the industrial production of the ß-lactam antibiotic penicillin. There are several mechanisms regulating the production of this antibiotic, acting both at the genetic and epigenetic levels, the latter including the modification of chromatin by methyltransferases. S-adenosyl-L-methionine (AdoMet) is the main donor of methyl groups for methyltransferases. In addition, it also acts as a donor of aminopropyl groups during the biosynthesis of polyamines. AdoMet is synthesized from L-methionine and ATP by AdoMet-synthetase. In silico analysis of the P. chrysogenum genome revealed the presence of a single gene (Pc16g04380) encoding a putative protein with high similarity to well-known AdoMet-synthetases. Due to the essential nature of this gene, functional analysis was carried out using RNAi-mediated silencing techniques. Knock-down transformants exhibited a decrease in AdoMet, S-adenosyl-L-homocysteine (AdoHcy), spermidine and benzylpenicillin levels, whereas they accumulated a yellow-orange pigment in submerged cultures. On the other hand, overexpression led to reduced levels of benzylpenicillin, thereby suggesting that the AdoMet synthetase, in addition to participate in primary metabolism, also controls secondary metabolism in P. chrysogenum.

10.
Front Microbiol ; 11: 487, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32269557

RESUMO

Symbiosis between prokaryotes and eukaryotes is a widespread phenomenon that has contributed to the evolution of eukaryotes. In cockroaches, two types of symbionts coexist: an endosymbiont in the fat body (Blattabacterium), and a rich gut microbiota. The transmission mode of Blattabacterium is vertical, while the gut microbiota of a new generation is mainly formed by bacterial species present in feces. We have carried out a metagenomic analysis of Blattella germanica populations, treated and non-treated with two antibiotics (vancomycin and ampicillin) over two generations to (1) determine the core of bacterial communities and potential functions of the gut microbiota and (2) to gain insights into the mechanisms of resistance and resilience of the gut microbiota. Our results indicate that the composition and functions of the bacteria were affected by treatment, more severely in the case of vancomycin. Further results demonstrated that in an untreated second-generation population that comes from antibiotic-treated first-generation, the microbiota is not yet stabilized at nymphal stages but can fully recover in adults when feces of a control population were added to the diet. This signifies the existence of a stable core in either composition and functions in lab-reared populations. The high microbiota diversity as well as the observed functional redundancy point toward the microbiota of cockroach hindguts as a robust ecosystem that can recover from perturbations, with recovery being faster when feces are added to the diet.

11.
J Proteomics ; 187: 243-259, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30092379

RESUMO

Biosynthesis of benzylpenicillin in filamentous fungi (e.g. Penicillium chrysogenum - renamed as Penicillium rubens- and Aspergillus nidulans) depends on the addition of CoA-activated forms of phenylacetic acid to isopenicillin N. Phenylacetic acid is also detoxified by means of the homogentisate pathway, which begins with the hydroxylation of phenylacetic acid to 2-hydroxyphenylacetate in a reaction catalysed by the pahA-encoded phenylacetate hydroxylase. This catabolic step has been tested in three different penicillin-producing strains of P. rubens (P. notatum, P. chrysogenum NRRL 1951 and P. chrysogenum Wisconsin 54-1255) in the presence of sucrose and lactose as non-repressing carbon sources. P. chrysogenum Wisconsin 54-1255 was able to accumulate 2-hydroxyphenylacetate at late culture times. Analysis of the P. rubens genome showed the presence of several PahA homologs, but only Pc16g01770 was transcribed under penicillin production conditions. Gene knock-down experiments indicated that the protein encoded by Pc16g01770 seems to have residual activity in phenylacetic acid degradation, this catabolic activity having no effect on benzylpenicillin biosynthesis. Proteome-wide analysis of the Wisconsin 54-1255 strain in response to phenylacetic acid revealed that this molecule has a positive effect on some proteins directly related to the benzylpenicillin biosynthetic pathway, the synthesis of amino acid precursors and other important metabolic processes. SIGNIFICANCE: The adaptive response of Penicillium rubens to benzylpenicillin production conditions remains to be fully elucidated. This article provides important information about the molecular mechanisms interconnected with phenylacetate (benzylpenicillin side chain precursor) utilization and penicillin biosynthesis, and will contribute to the understanding of the complex physiology and adaptation mechanisms triggered by P. rubens (P. chrysogenum Wisconsin 54-1255) under benzylpenicillin production conditions.


Assuntos
Aspergillus nidulans/metabolismo , Penicillium chrysogenum/metabolismo , Fenilacetatos/metabolismo , Fenilacetatos/farmacologia , Proteoma/análise , Proteoma/efeitos dos fármacos , Aspergillus nidulans/química , Aspergillus nidulans/genética , Proteínas Fúngicas/análise , Proteínas Fúngicas/efeitos dos fármacos , Proteínas Fúngicas/metabolismo , Engenharia Metabólica , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Metabolismo , Organismos Geneticamente Modificados , Penicilina G/metabolismo , Penicilinas/biossíntese , Penicillium chrysogenum/química , Penicillium chrysogenum/genética , Proteoma/metabolismo , Proteômica/métodos
12.
FEMS Microbiol Ecol ; 94(2)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29325007

RESUMO

Eukaryotes have established symbiotic relationship with microorganisms, which enables them to accomplish functions that they cannot perform alone. In the German cockroach, Blattella germanica, the obligate endosymbiont Blattabacterium coexists with a rich gut microbiota. The transmission of Blattabacterium is vertical, but little is known about how the gut microbiota colonizes newborn individuals. In this study, we treated B. germanica populations with rifampicin, a broad-spectrum antibiotic, during two generations and analyzed gut bacterial composition and the Blattabacterium load in control and rifampicin-treated populations. Rifampicin exerted a drastic effect on gut microbiota composition, which recovered in the second generation in the case where the antibiotic was not added to the diet. Furthermore, we observed that bacterial species present in the diet, and particularly in the feces, contribute significantly to establishing the gut microbiota. Finally, the Blattabacterium population remained unaffected by the antibiotic treatment of adults during the first generation but was strongly reduced in the second generation, suggesting that this intracellular symbiont is sensitive to rifampicin only during the infection of the mature oocytes, when it is in an extracellular stage.


Assuntos
Antibacterianos/farmacologia , Blattellidae/microbiologia , Flavobacteriaceae/efeitos dos fármacos , Flavobacteriaceae/isolamento & purificação , Microbioma Gastrointestinal/efeitos dos fármacos , Rifampina/farmacologia , Adulto , Animais , Técnicas de Tipagem Bacteriana , Fezes/microbiologia , Humanos , Masculino , Filogenia , Simbiose
13.
J Proteomics ; 156: 52-62, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28062375

RESUMO

Transport of penicillin intermediates and penicillin secretion are still poorly characterized in Penicillium chrysogenum (re-identified as Penicillium rubens). Calcium (Ca2+) plays an important role in the metabolism of filamentous fungi, and casein phosphopeptides (CPP) are involved in Ca2+ internalization. In this study we observe that the effect of CaCl2 and CPP is additive and promotes an increase in penicillin production of up to 10-12 fold. Combination of CaCl2 and CPP greatly promotes expression of the three penicillin biosynthetic genes. Comparative proteomic analysis by 2D-DIGE, identified 39 proteins differentially represented in P. chrysogenum Wisconsin 54-1255 after CPP/CaCl2 addition. The most interesting group of overrepresented proteins were a peroxisomal catalase, three proteins of the methylcitrate cycle, two aminotransferases and cystationine ß-synthase, which are directly or indirectly related to the formation of penicillin amino acid precursors. Importantly, two of the enzymes of the penicillin pathway (isopenicillin N synthase and isopenicillin N acyltransferase) are clearly induced after CPP/CaCl2 addition. Most of these overrepresented proteins are either authentic peroxisomal proteins or microbody-associated proteins. This evidence suggests that addition of CPP/CaCl2 promotes the formation of penicillin precursors and the penicillin biosynthetic enzymes in peroxisomes and vesicles, which may be involved in transport and secretion of penicillin. SIGNIFICANCE: Penicillin biosynthesis in Penicillium chrysogenum is one of the best characterized secondary metabolism processes. However, the mechanism by which penicillin is secreted still remains to be elucidated. Taking into account the role played by Ca2+ and CPP in the secretory pathway and considering the positive effect that Ca2+ exerts on penicillin production, the analysis of global protein changes produced after CPP/CaCl2 addition is very helpful to decipher the processes related to the biosynthesis and secretion of penicillin.


Assuntos
Cloreto de Cálcio/farmacologia , Caseínas/farmacologia , Proteínas Fúngicas/efeitos dos fármacos , Microcorpos/química , Penicilinas/biossíntese , Penicillium chrysogenum/metabolismo , Peroxissomos/química , Fosfopeptídeos/farmacologia , Proteínas Fúngicas/análise , Penicilinas/metabolismo
14.
Food Microbiol ; 62: 239-250, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27889155

RESUMO

Mycophenolic acid (MPA) is a secondary metabolite produced by various Penicillium species including Penicillium roqueforti. The MPA biosynthetic pathway was recently described in Penicillium brevicompactum. In this study, an in silico analysis of the P. roqueforti FM164 genome sequence localized a 23.5-kb putative MPA gene cluster. The cluster contains seven genes putatively coding seven proteins (MpaA, MpaB, MpaC, MpaDE, MpaF, MpaG, MpaH) and is highly similar (i.e. gene synteny, sequence homology) to the P. brevicompactum cluster. To confirm the involvement of this gene cluster in MPA biosynthesis, gene silencing using RNA interference targeting mpaC, encoding a putative polyketide synthase, was performed in a high MPA-producing P. roqueforti strain (F43-1). In the obtained transformants, decreased MPA production (measured by LC-Q-TOF/MS) was correlated to reduced mpaC gene expression by Q-RT-PCR. In parallel, mycotoxin quantification on multiple P. roqueforti strains suggested strain-dependent MPA-production. Thus, the entire MPA cluster was sequenced for P. roqueforti strains with contrasted MPA production and a 174bp deletion in mpaC was observed in low MPA-producers. PCRs directed towards the deleted region among 55 strains showed an excellent correlation with MPA quantification. Our results indicated the clear involvement of mpaC gene as well as surrounding cluster in P. roqueforti MPA biosynthesis.


Assuntos
Genes Fúngicos , Ácido Micofenólico/metabolismo , Penicillium/genética , Penicillium/metabolismo , Queijo/microbiologia , Simulação por Computador , Expressão Gênica , Inativação Gênica , Genoma Fúngico , Família Multigênica , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Reação em Cadeia da Polimerase , Biossíntese de Proteínas
15.
Biochimie ; 115: 162-76, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26049046

RESUMO

Penicillin biosynthesis in Penicillium chrysogenum (re-identified as Penicillium rubens) is a good example of a biological process subjected to complex global regulatory networks and serves as a model to study fungal secondary metabolism. The winged-helix family of transcription factors recently described, which includes the forkhead type of proteins, is a key type of regulatory proteins involved in this process. In yeasts and humans, forkhead transcription factors are involved in different processes (cell cycle regulation, cell death control, pre-mRNA processing and morphogenesis); one member of this family of proteins has been identified in the P. chrysogenum genome (Pc18g00430). In this work, we have characterized this novel transcription factor (named PcFKH1) by generating knock-down mutants and overexpression strains. Results clearly indicate that PcFKH1 positively controls antibiotic biosynthesis through the specific interaction with the promoter region of the penDE gene, thus regulating penDE mRNA levels. PcFKH1 also binds to the pcbC promoter, but with low affinity. In addition, it also controls other ancillary genes of the penicillin biosynthetic process, such as phlA (encoding phenylacetyl CoA ligase) and ppt (encoding phosphopantetheinyl transferase). PcFKH1 also plays a role in conidiation and spore pigmentation, but it does not seem to be involved in hyphal morphology or cell division in the improved laboratory reference strain Wisconsin 54-1255. A genome-wide analysis of processes putatively coregulated by PcFKH1 and PcRFX1 (another winged-helix transcription factor) in P. chrysogenum provided evidence of the global effect of these transcription factors in P. chrysogenum metabolism.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Proteínas Fúngicas/metabolismo , Penicilinas/biossíntese , Penicillium chrysogenum/metabolismo , Aciltransferases/deficiência , Sítios de Ligação , Divisão Celular , DNA/metabolismo , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Genômica , Penicilina G/metabolismo , Penicilinas/metabolismo , Penicillium chrysogenum/citologia , Penicillium chrysogenum/genética , Pigmentação , Regiões Promotoras Genéticas/genética , Homologia de Sequência do Ácido Nucleico , Esporos Fúngicos/metabolismo
16.
Appl Microbiol Biotechnol ; 98(16): 7113-24, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24818689

RESUMO

The transcription factor CreA is the main regulator responsible for carbon repression in filamentous fungi. CreA is a wide domain regulator that binds to regulatory elements in the promoters of target genes to repress their transcription. Penicillin biosynthesis and the expression of penicillin biosynthetic genes are subject to carbon repression. However, evidence of the participation of CreA in this regulation is still lacking, and previous studies on the promoter of the pcbC gene of Aspergillus nidulans indicated the lack of involvement of CreA in its regulation. Here we present clear evidence of the participation of CreA in carbon repression of penicillin biosynthesis and expression of the pcbAB gene, encoding the first enzyme of the pathway, in Penicillium chrysogenum. Mutations in cis of some of the putative CreA binding sites present in the pcbAB gene promoter fused to a reporter gene caused an important increase in the measured enzyme activity in glucose-containing medium, whereas activity in the medium with lactose was not affected. An RNAi strategy was used to attenuate the expression of the creA gene. Transformants expressing a small interfering RNA for creA showed higher penicillin production, and this increase was more evident when glucose was used as carbon source. These results confirm that CreA plays an important role in the regulation of penicillin biosynthesis in P. chrysogenum and opens the possibility of its utilization to improve the industrial production of this antibiotic.


Assuntos
Repressão Catabólica , Regulação Fúngica da Expressão Gênica , Penicilinas/biossíntese , Penicillium chrysogenum/genética , Penicillium chrysogenum/metabolismo , Fatores de Transcrição/metabolismo , Fusão Gênica Artificial , Sítios de Ligação , Genes Reporter , Mutação , Regiões Promotoras Genéticas , Transcrição Gênica
17.
Fungal Genet Biol ; 49(11): 866-81, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22960281

RESUMO

Penicillin biosynthesis is subjected to a complex regulatory network of signalling molecules that may serve as model for other secondary metabolites. The information provided by the new "omics" era about Penicillium chrysogenum and the advances in the knowledge of molecular mechanisms responsible for improved productivity, make this fungus an excellent model to decipher the mechanisms controlling the penicillin biosynthetic pathway. In this work, we have characterized a novel transcription factor PcRFX1, which is an ortholog of the Acremonium chrysogenum CPCR1 and Penicillium marneffei RfxA regulatory proteins. PcRFX1 DNA binding sequences were found in the promoter region of the pcbAB, pcbC and penDE genes. We show in this article that these motifs control the expression of the ß-galactosidase lacZ reporter gene, indicating that they may direct the PcRFX1-mediated regulation of the penicillin biosynthetic genes. By means of Pcrfx1 gene knock-down and overexpression techniques we confirmed that PcRFX1 controls penicillin biosynthesis through the regulation of the pcbAB, pcbC and penDE transcription. Morphology and development seemed not to be controlled by this transcription factor under the conditions studied and only sporulation was slightly reduced after the silencing of the Pcrfx1 gene. A genome-wide analysis of processes putatively regulated by this transcription factor was carried out in P. chrysogenum. Results suggested that PcRFX1, in addition to regulate penicillin biosynthesis, is also involved in the control of several pathways of primary metabolism.


Assuntos
Aciltransferases/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Oxirredutases/genética , Proteínas de Ligação às Penicilinas/genética , Penicillium chrysogenum/metabolismo , Peptídeo Sintases/genética , Fatores de Transcrição/metabolismo , beta-Lactamas/metabolismo , Aciltransferases/metabolismo , Sequência de Bases , Proteínas Fúngicas/genética , Dados de Sequência Molecular , Oxirredutases/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Penicillium chrysogenum/enzimologia , Penicillium chrysogenum/genética , Peptídeo Sintases/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA