Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7456, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978174

RESUMO

The timing of early cellular evolution, from the divergence of Archaea and Bacteria to the origin of eukaryotes, is poorly constrained. The ATP synthase complex is thought to have originated prior to the Last Universal Common Ancestor (LUCA) and analyses of ATP synthase genes, together with ribosomes, have played a key role in inferring and rooting the tree of life. We reconstruct the evolutionary history of ATP synthases using an expanded taxon sampling set and develop a phylogenetic cross-bracing approach, constraining equivalent speciation nodes to be contemporaneous, based on the phylogenetic imprint of endosymbioses and ancient gene duplications. This approach results in a highly resolved, dated species tree and establishes an absolute timeline for ATP synthase evolution. Our analyses show that the divergence of ATP synthase into F- and A/V-type lineages was a very early event in cellular evolution dating back to more than 4 Ga, potentially predating the diversification of Archaea and Bacteria. Our cross-braced, dated tree of life also provides insight into more recent evolutionary transitions including eukaryogenesis, showing that the eukaryotic nuclear and mitochondrial lineages diverged from their closest archaeal (2.67-2.19 Ga) and bacterial (2.58-2.12 Ga) relatives at approximately the same time, with a slightly longer nuclear stem-lineage.


Assuntos
Archaea , Bactérias , Filogenia , Bactérias/genética , Archaea/genética , Mitocôndrias/genética , Trifosfato de Adenosina , Evolução Molecular , Eucariotos/genética , Evolução Biológica
2.
ISME Commun ; 3(1): 68, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37423910

RESUMO

Ocean plastic pollution is a severe environmental problem but most of the plastic that has been released to the ocean since the 1950s is unaccounted for. Although fungal degradation of marine plastics has been suggested as a potential sink mechanism, unambiguous proof of plastic degradation by marine fungi, or other microbes, is scarce. Here we applied stable isotope tracing assays with 13C-labeled polyethylene to measure biodegradation rates and to trace the incorporation of plastic-derived carbon into individual cells of the yeast Rhodotorula mucilaginosa, which we isolated from the marine environment. 13C accumulation in the CO2 pool during 5-day incubation experiments with R. mucilaginosa and UV-irradiated 13C-labeled polyethylene as a sole energy and carbon source translated to degradation rates of 3.8% yr-1 of the initially added substrate. Furthermore, nanoSIMS measurements revealed substantial incorporation of polyethylene-derived carbon into fungal biomass. Our results demonstrate the potential of R. mucilaginosa to mineralize and assimilate carbon from plastics and suggest that fungal plastic degradation may be an important sink for polyethylene litter in the marine environment.

3.
Nature ; 618(7967): 992-999, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37316666

RESUMO

In the ongoing debates about eukaryogenesis-the series of evolutionary events leading to the emergence of the eukaryotic cell from prokaryotic ancestors-members of the Asgard archaea play a key part as the closest archaeal relatives of eukaryotes1. However, the nature and phylogenetic identity of the last common ancestor of Asgard archaea and eukaryotes remain unresolved2-4. Here we analyse distinct phylogenetic marker datasets of an expanded genomic sampling of Asgard archaea and evaluate competing evolutionary scenarios using state-of-the-art phylogenomic approaches. We find that eukaryotes are placed, with high confidence, as a well-nested clade within Asgard archaea and as a sister lineage to Hodarchaeales, a newly proposed order within Heimdallarchaeia. Using sophisticated gene tree and species tree reconciliation approaches, we show that analogous to the evolution of eukaryotic genomes, genome evolution in Asgard archaea involved significantly more gene duplication and fewer gene loss events compared with other archaea. Finally, we infer that the last common ancestor of Asgard archaea was probably a thermophilic chemolithotroph and that the lineage from which eukaryotes evolved adapted to mesophilic conditions and acquired the genetic potential to support a heterotrophic lifestyle. Our work provides key insights into the prokaryote-to-eukaryote transition and a platform for better understanding the emergence of cellular complexity in eukaryotic cells.


Assuntos
Archaea , Eucariotos , Filogenia , Archaea/classificação , Archaea/citologia , Archaea/genética , Eucariotos/classificação , Eucariotos/citologia , Eucariotos/genética , Células Eucarióticas/classificação , Células Eucarióticas/citologia , Células Procarióticas/classificação , Células Procarióticas/citologia , Conjuntos de Dados como Assunto , Duplicação Gênica , Evolução Molecular
4.
RNA Biol ; 20(1): 48-58, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36727270

RESUMO

Automated genome annotation is essential for extracting biological information from sequence data. The identification and annotation of tRNA genes is frequently performed by the software package tRNAscan-SE, the output of which is listed for selected genomes in the Genomic tRNA database (GtRNAdb). Here, we highlight a pervasive error in prokaryotic tRNA gene sets on GtRNAdb: the mis-categorization of partial, non-canonical tRNA genes as standard, canonical tRNA genes. Firstly, we demonstrate the issue using the tRNA gene sets of 20 organisms from the archaeal taxon Thermococcaceae. According to GtRNAdb, these organisms collectively deviate from the expected set of tRNA genes in 15 instances, including the listing of eleven putative canonical tRNA genes. However, after detailed manual annotation, only one of these eleven remains; the others are either partial, non-canonical tRNA genes resulting from the integration of genetic elements or CRISPR-Cas activity (seven instances), or attributable to ambiguities in input sequences (three instances). Secondly, we show that similar examples of the mis-categorization of predicted tRNA sequences occur throughout the prokaryotic sections of GtRNAdb. While both canonical and non-canonical prokaryotic tRNA gene sequences identified by tRNAscan-SE are biologically interesting, the challenge of reliably distinguishing between them remains. We recommend employing a combination of (i) screening input sequences for the genetic elements typically associated with non-canonical tRNA genes, and ambiguities, (ii) activating the tRNAscan-SE automated pseudogene detection function, and (iii) scrutinizing predicted tRNA genes with low isotype scores. These measures greatly reduce manual annotation efforts, and lead to improved prokaryotic tRNA gene set predictions.


Assuntos
Genoma , RNA de Transferência , RNA de Transferência/genética
5.
Nat Commun ; 13(1): 1735, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365607

RESUMO

Micrarchaeota is a distinctive lineage assigned to the DPANN archaea, which includes poorly characterised microorganisms with reduced genomes that likely depend on interactions with hosts for growth and survival. Here, we report the enrichment of a stable co-culture of a member of the Micrarchaeota (Ca. Micrarchaeum harzensis) together with its Thermoplasmatales host (Ca. Scheffleriplasma hospitalis), as well as the isolation of the latter. We show that symbiont-host interactions depend on biofilm formation as evidenced by growth experiments, comparative transcriptomic analyses and electron microscopy. In addition, genomic, metabolomic, extracellular polymeric substances and lipid content analyses indicate that the Micrarchaeon symbiont relies on the acquisition of metabolites from its host. Our study of the cell biology and physiology of a Micrarchaeon and its host adds to our limited knowledge of archaeal symbioses.


Assuntos
Thermoplasmales , Archaea/genética , Biofilmes , Genoma Arqueal , Filogenia , Thermoplasmales/genética , Thermoplasmales/metabolismo
6.
Elife ; 112022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35190025

RESUMO

Core gene phylogenies provide a window into early evolution, but different gene sets and analytical methods have yielded substantially different views of the tree of life. Trees inferred from a small set of universal core genes have typically supported a long branch separating the archaeal and bacterial domains. By contrast, recent analyses of a broader set of non-ribosomal genes have suggested that Archaea may be less divergent from Bacteria, and that estimates of inter-domain distance are inflated due to accelerated evolution of ribosomal proteins along the inter-domain branch. Resolving this debate is key to determining the diversity of the archaeal and bacterial domains, the shape of the tree of life, and our understanding of the early course of cellular evolution. Here, we investigate the evolutionary history of the marker genes key to the debate. We show that estimates of a reduced Archaea-Bacteria (AB) branch length result from inter-domain gene transfers and hidden paralogy in the expanded marker gene set. By contrast, analysis of a broad range of manually curated marker gene datasets from an evenly sampled set of 700 Archaea and Bacteria reveals that current methods likely underestimate the AB branch length due to substitutional saturation and poor model fit; that the best-performing phylogenetic markers tend to support longer inter-domain branch lengths; and that the AB branch lengths of ribosomal and non-ribosomal marker genes are statistically indistinguishable. Furthermore, our phylogeny inferred from the 27 highest-ranked marker genes recovers a clade of DPANN at the base of the Archaea and places the bacterial Candidate Phyla Radiation (CPR) within Bacteria as the sister group to the Chloroflexota.


Assuntos
Archaea , Bactérias , Archaea/genética , Bactérias/metabolismo , Evolução Molecular , Filogenia , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
7.
ISME J ; 16(1): 307-320, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34331018

RESUMO

Deltaproteobacteria, now proposed to be the phyla Desulfobacterota, Myxococcota, and SAR324, are ubiquitous in marine environments and play essential roles in global carbon, sulfur, and nutrient cycling. Despite their importance, our understanding of these bacteria is biased towards cultured organisms. Here we address this gap by compiling a genomic catalog of 1 792 genomes, including 402 newly reconstructed and characterized metagenome-assembled genomes (MAGs) from coastal and deep-sea sediments. Phylogenomic analyses reveal that many of these novel MAGs are uncultured representatives of Myxococcota and Desulfobacterota that are understudied. To better characterize Deltaproteobacteria diversity, metabolism, and ecology, we clustered ~1 500 genomes based on the presence/absence patterns of their protein families. Protein content analysis coupled with large-scale metabolic reconstructions separates eight genomic clusters of Deltaproteobacteria with unique metabolic profiles. While these eight clusters largely correspond to phylogeny, there are exceptions where more distantly related organisms appear to have similar ecological roles and closely related organisms have distinct protein content. Our analyses have identified previously unrecognized roles in the cycling of methylamines and denitrification among uncultured Deltaproteobacteria. This new view of Deltaproteobacteria diversity expands our understanding of these dominant bacteria and highlights metabolic abilities across diverse taxa.


Assuntos
Deltaproteobacteria , Metagenoma , Bactérias/genética , Deltaproteobacteria/genética , Genômica , Humanos , Filogenia
9.
Mol Ecol Resour ; 21(6): 1952-1965, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33905604

RESUMO

Profiling diverse microbiomes is revolutionizing our understanding of biological mechanisms and ecologically relevant problems, including metaorganism (host + microbiome) assembly, functions and adaptation. Amplicon sequencing of multiple conserved, phylogenetically informative loci has therefore become an instrumental tool for many researchers. Investigations in many systems are hindered, however, since essential sequencing depth can be lost by amplification of nontarget DNA from hosts or overabundant microorganisms. Here, we introduce "blocking oligos", a low-cost and flexible method using standard oligonucleotides to block amplification of diverse nontargets and software to aid their design. We apply them primarily in leaves, where exceptional challenges with host amplification prevail. A. thaliana-specific blocking oligos applied in eight different target loci reduce undesirable host amplification by up to 90%. To expand applicability, we designed universal 16S and 18S rRNA gene plant blocking oligos for targets that are conserved in diverse plant species and demonstrate that they efficiently block five plant species from five orders spanning monocots and dicots (Bromus erectus, Plantago lanceolata, Lotus corniculatus, Amaranth sp., Arabidopsis thaliana). These can increase alpha diversity discovery without biasing beta diversity patterns and do not compromise microbial load information inherent to plant-derived 16S rRNA gene amplicon sequencing data. Finally, we designed and tested blocking oligos to avoid amplification of 18S rRNA genes of a sporulating oomycete pathogen, demonstrating their effectiveness in applications well beyond plants. Using these tools, we generated a survey of the A. thaliana leaf microbiome based on eight loci targeting bacterial, fungal, oomycete and other eukaryotic microorganisms and discuss complementarity of commonly used amplicon sequencing regions for describing leaf microbiota. This approach has potential to make questions in a variety of study systems more tractable by making amplicon sequencing more targeted, leading to deeper, systems-based insights into microbial discovery. For fast and easy design for blocking oligos for any nontarget DNA in other study systems, we developed a publicly available R package.


Assuntos
Microbiota , Plantas/microbiologia , Bactérias/classificação , Fungos/classificação , Sequenciamento de Nucleotídeos em Larga Escala , Oomicetos/classificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
10.
Nat Commun ; 12(1): 2404, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893309

RESUMO

Geothermal environments, such as hot springs and hydrothermal vents, are hotspots for carbon cycling and contain many poorly described microbial taxa. Here, we reconstructed 15 archaeal metagenome-assembled genomes (MAGs) from terrestrial hot spring sediments in China and deep-sea hydrothermal vent sediments in Guaymas Basin, Gulf of California. Phylogenetic analyses of these MAGs indicate that they form a distinct group within the TACK superphylum, and thus we propose their classification as a new phylum, 'Brockarchaeota', named after Thomas Brock for his seminal research in hot springs. Based on the MAG sequence information, we infer that some Brockarchaeota are uniquely capable of mediating non-methanogenic anaerobic methylotrophy, via the tetrahydrofolate methyl branch of the Wood-Ljungdahl pathway and reductive glycine pathway. The hydrothermal vent genotypes appear to be obligate fermenters of plant-derived polysaccharides that rely mostly on substrate-level phosphorylation, as they seem to lack most respiratory complexes. In contrast, hot spring lineages have alternate pathways to increase their ATP yield, including anaerobic methylotrophy of methanol and trimethylamine, and potentially use geothermally derived mercury, arsenic, or hydrogen. Their broad distribution and their apparent anaerobic metabolic versatility indicate that Brockarchaeota may occupy previously overlooked roles in anaerobic carbon cycling.


Assuntos
Archaea/genética , Ciclo do Carbono/genética , Genoma Arqueal/genética , Metagenoma/genética , Filogenia , Archaea/classificação , Archaea/metabolismo , Carbono/metabolismo , China , Geografia , Sedimentos Geológicos/microbiologia , Fontes Termais/microbiologia , Fontes Hidrotermais/microbiologia , Metano/metabolismo , RNA Ribossômico 16S/genética , Especificidade da Espécie
11.
Environ Microbiol ; 23(6): 2709-2728, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-31858660

RESUMO

Organic matter degradation in marine environments is essential for the recycling of nutrients, especially under conditions of anoxia where organic matter tends to accumulate. However, little is known about the diversity of the microbial communities responsible for the mineralization of organic matter in the absence of oxygen, as well as the factors controlling their activities. Here, we determined the active heterotrophic prokaryotic community in the sulphidic water column of the Black Sea, an ideal model system, where a tight coupling between carbon, nitrogen and sulphur cycles is expected. Active microorganisms degrading both dissolved organic matter (DOM) and protein extracts were determined using quantitative DNA stable isotope probing incubation experiments. These results were compared with the metabolic potential of metagenome-assembled genomes obtained from the water column. Organic matter incubations showed that groups like Cloacimonetes and Marinimicrobia are generalists degrading DOM. Based on metagenomic profiles the degradation proceeds in a potential interaction with members of the Deltaproteobacteria and Chloroflexi Dehalococcoidia. On the other hand, microbes with small genomes like the bacterial phyla Parcubacteria, Omnitrophica and of the archaeal phylum Woesearchaeota, were the most active, especially in protein-amended incubations, revealing the potential advantage of streamlined microorganisms in highly reduced conditions.


Assuntos
Microbiota , Archaea/genética , Bactérias/genética , Mar Negro , Metagenoma
12.
Proc Natl Acad Sci U S A ; 117(51): 32627-32638, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33277434

RESUMO

Hydrothermally active submarine volcanoes are mineral-rich biological oases contributing significantly to chemical fluxes in the deep sea, yet little is known about the microbial communities inhabiting these systems. Here we investigate the diversity of microbial life in hydrothermal deposits and their metagenomics-inferred physiology in light of the geological history and resulting hydrothermal fluid paths in the subsurface of Brothers submarine volcano north of New Zealand on the southern Kermadec arc. From metagenome-assembled genomes we identified over 90 putative bacterial and archaeal genomic families and nearly 300 previously unknown genera, many potentially endemic to this submarine volcanic environment. While magmatically influenced hydrothermal systems on the volcanic resurgent cones of Brothers volcano harbor communities of thermoacidophiles and diverse members of the superphylum "DPANN," two distinct communities are associated with the caldera wall, likely shaped by two different types of hydrothermal circulation. The communities whose phylogenetic diversity primarily aligns with that of the cone sites and magmatically influenced hydrothermal systems elsewhere are characterized predominately by anaerobic metabolisms. These populations are probably maintained by fluids with greater magmatic inputs that have interacted with different (deeper) previously altered mineral assemblages. However, proximal (a few meters distant) communities with gene-inferred aerobic, microaerophilic, and anaerobic metabolisms are likely supported by shallower seawater-dominated circulation. Furthermore, mixing of fluids from these two distinct hydrothermal circulation systems may have an underlying imprint on the high microbial phylogenomic diversity. Collectively our results highlight the importance of considering geologic evolution and history of subsurface processes in studying microbial colonization and community dynamics in volcanic environments.


Assuntos
Fontes Hidrotermais/microbiologia , Consórcios Microbianos/fisiologia , Água do Mar/microbiologia , Erupções Vulcânicas , Archaea/genética , Bactérias/genética , Biodiversidade , Concentração de Íons de Hidrogênio , Metagenoma , Nova Zelândia , Oxirredução , Oceano Pacífico , Filogenia , Sulfetos/química
13.
Nat Commun ; 11(1): 3939, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770105

RESUMO

The recently discovered DPANN archaea are a potentially deep-branching, monophyletic radiation of organisms with small cells and genomes. However, the monophyly and early emergence of the various DPANN clades and their role in life's evolution are debated. Here, we reconstructed and analysed genomes of an uncharacterized archaeal phylum (Candidatus Undinarchaeota), revealing that its members have small genomes and, while potentially being able to conserve energy through fermentation, likely depend on partner organisms for the acquisition of certain metabolites. Our phylogenomic analyses robustly place Undinarchaeota as an independent lineage between two highly supported 'DPANN' clans. Further, our analyses suggest that DPANN have exchanged core genes with their hosts, adding to the difficulty of placing DPANN in the tree of life. This pattern can be sufficiently dominant to allow identifying known symbiont-host clades based on routes of gene transfer. Together, our work provides insights into the origins and evolution of DPANN and their hosts.


Assuntos
Archaea/genética , Evolução Molecular , Transferência Genética Horizontal , Genoma Arqueal , Simbiose/genética , Filogenia
14.
Nat Microbiol ; 5(7): 887-900, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32367054

RESUMO

Compared to bacteria, our knowledge of archaeal biology is limited. Historically, microbiologists have mostly relied on culturing and single-gene diversity surveys to understand Archaea in nature. However, only six of the 27 currently proposed archaeal phyla have cultured representatives. Advances in genomic sequencing and computational approaches are revolutionizing our understanding of Archaea. The recovery of genomes belonging to uncultured groups from the environment has resulted in the description of several new phyla, many of which are globally distributed and are among the predominant organisms on the planet. In this Review, we discuss how these genomes, together with long-term enrichment studies and elegant in situ measurements, are providing insights into the metabolic capabilities of the Archaea. We also debate how such studies reveal how important Archaea are in mediating an array of ecological processes, including global carbon and nutrient cycles, and how this increase in archaeal diversity has expanded our view of the tree of life and early archaeal evolution, and has provided new insights into the origin of eukaryotes.


Assuntos
Archaea , Biodiversidade , Evolução Biológica , Ecologia , Archaea/classificação , Archaea/genética , Archaea/crescimento & desenvolvimento , Archaea/metabolismo , Metabolismo Energético , Microbiologia Ambiental , Variação Genética , Genoma Arqueal , Filogenia
15.
Nat Microbiol ; 5(7): 976, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32427979

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

16.
Environ Microbiol ; 22(5): 1764-1783, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31775181

RESUMO

Microbial communities inhabit algae cell surfaces and produce a variety of compounds that can impact the fitness of the host. These interactions have been studied via culturing, single-gene diversity and metagenomic read survey methods that are limited by culturing biases and fragmented genetic characterizations. Higher-resolution frameworks are needed to resolve the physiological interactions within these algal-bacterial communities. Here, we infer the encoded metabolic capabilities of four uncultured bacterial genomes (reconstructed using metagenomic assembly and binning) associated with the marine dinoflagellates Gambierdiscus carolinianus and G. caribaeus. Phylogenetic analyses revealed that two of the genomes belong to the commonly algae-associated families Rhodobacteraceae and Flavobacteriaceae. The other two genomes belong to the Phycisphaeraceae and include the first algae-associated representative within the uncultured SM1A02 group. Analyses of all four genomes suggest these bacteria are facultative aerobes, with some capable of metabolizing phytoplanktonic organosulfur compounds including dimethylsulfoniopropionate and sulfated polysaccharides. These communities may biosynthesize compounds beneficial to both the algal host and other bacteria, including iron chelators, B vitamins, methionine, lycopene, squalene and polyketides. These findings have implications for marine carbon and nutrient cycling and provide a greater depth of understanding regarding the genetic potential for complex physiological interactions between microalgae and their associated bacteria.


Assuntos
Dinoflagellida/microbiologia , Flavobacteriaceae/genética , Genoma Bacteriano/genética , Microalgas/microbiologia , Rhodobacteraceae/genética , Fenômenos Bioquímicos , Metagenoma , Metagenômica , Microbiota/genética , Filogenia , Fitoplâncton/microbiologia
17.
Appl Environ Microbiol ; 85(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31324636

RESUMO

Anoxic subsurface sediments contain communities of heterotrophic microorganisms that metabolize organic carbon at extraordinarily low rates. In order to assess the mechanisms by which subsurface microorganisms access detrital sedimentary organic matter, we measured kinetics of a range of extracellular peptidases in anoxic sediments of the White Oak River Estuary, NC. Nine distinct peptidase substrates were enzymatically hydrolyzed at all depths. Potential peptidase activities (Vmax) decreased with increasing sediment depth, although Vmax expressed on a per-cell basis was approximately the same at all depths. Half-saturation constants (Km ) decreased with depth, indicating peptidases that functioned more efficiently at low substrate concentrations. Potential activities of extracellular peptidases acting on molecules that are enriched in degraded organic matter (d-phenylalanine and l-ornithine) increased relative to enzymes that act on l-phenylalanine, further suggesting microbial community adaptation to access degraded organic matter. Nineteen classes of predicted, exported peptidases were identified in genomic data from the same site, of which genes for class C25 (gingipain-like) peptidases represented more than 40% at each depth. Methionine aminopeptidases, zinc carboxypeptidases, and class S24-like peptidases, which are involved in single-stranded-DNA repair, were also abundant. These results suggest a subsurface heterotrophic microbial community that primarily accesses low-quality detrital organic matter via a diverse suite of well-adapted extracellular enzymes.IMPORTANCE Burial of organic carbon in marine and estuarine sediments represents a long-term sink for atmospheric carbon dioxide. Globally, ∼40% of organic carbon burial occurs in anoxic estuaries and deltaic systems. However, the ultimate controls on the amount of organic matter that is buried in sediments, versus oxidized into CO2, are poorly constrained. In this study, we used a combination of enzyme assays and metagenomic analysis to identify how subsurface microbial communities catalyze the first step of proteinaceous organic carbon degradation. Our results show that microbial communities in deeper sediments are adapted to access molecules characteristic of degraded organic matter, suggesting that those heterotrophs are adapted to life in the subsurface.


Assuntos
Estuários , Sedimentos Geológicos/química , Microbiota , Peptídeo Hidrolases/isolamento & purificação , Peptídeo Hidrolases/metabolismo , Carbono/química , Processos Heterotróficos , Cinética , Metagenoma , North Carolina , Compostos Orgânicos/química
18.
ISME J ; 13(8): 2135-2139, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31048756

RESUMO

DPANN archaea have reduced metabolic capacities and are diverse and abundant in deep aquifer ecosystems, yet little is known about their interactions with other microorganisms that reside there. Here, we provide evidence for an archaeal host-symbiont association from a deep aquifer system at the Colorado Plateau (Utah, USA). The symbiont, Candidatus Huberiarchaeum crystalense, and its host, Ca. Altiarchaeum hamiconexum, show a highly significant co-occurrence pattern over 65 metagenome samples collected over six years. The physical association of the two organisms was confirmed with genome-informed fluorescence in situ hybridization depicting small cocci of Ca. H. crystalense attached to Ca. A. hamiconexum cells. Based on genomic information, Ca. H. crystalense potentially scavenges vitamins, sugars, nucleotides, and reduced redox-equivalents from its host and thus has a similar metabolism as Nanoarchaeum equitans. These results provide insight into host-symbiont interactions among members of two uncultivated archaeal phyla that thrive in a deep subsurface aquifer.


Assuntos
Archaea/genética , Genoma Arqueal/genética , Metagenoma , Nanoarchaeota/genética , Simbiose , Archaea/isolamento & purificação , Archaea/fisiologia , Ecossistema , Água Subterrânea , Hibridização in Situ Fluorescente , Nanoarchaeota/isolamento & purificação , Nanoarchaeota/fisiologia , Filogenia , Utah
19.
Nat Commun ; 10(1): 1822, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015394

RESUMO

Large reservoirs of natural gas in the oceanic subsurface sustain complex communities of anaerobic microbes, including archaeal lineages with potential to mediate oxidation of hydrocarbons such as methane and butane. Here we describe a previously unknown archaeal phylum, Helarchaeota, belonging to the Asgard superphylum and with the potential for hydrocarbon oxidation. We reconstruct Helarchaeota genomes from metagenomic data derived from hydrothermal deep-sea sediments in the hydrocarbon-rich Guaymas Basin. The genomes encode methyl-CoM reductase-like enzymes that are similar to those found in butane-oxidizing archaea, as well as several enzymes potentially involved in alkyl-CoA oxidation and the Wood-Ljungdahl pathway. We suggest that members of the Helarchaeota have the potential to activate and subsequently anaerobically oxidize hydrothermally generated short-chain hydrocarbons.


Assuntos
Archaea/metabolismo , Proteínas Arqueais/metabolismo , Genoma Arqueal/genética , Hidrocarbonetos/metabolismo , Oxirredutases/metabolismo , Anaerobiose , Archaea/genética , Proteínas Arqueais/genética , Sedimentos Geológicos/microbiologia , Fontes Hidrotermais/microbiologia , Redes e Vias Metabólicas/genética , Metagenômica , Oceanos e Mares , Oxirredutases/genética , Filogenia
20.
Nat Microbiol ; 4(7): 1138-1148, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30936488

RESUMO

The origin of eukaryotes represents an unresolved puzzle in evolutionary biology. Current research suggests that eukaryotes evolved from a merger between a host of archaeal descent and an alphaproteobacterial endosymbiont. The discovery of the Asgard archaea, a proposed archaeal superphylum that includes Lokiarchaeota, Thorarchaeota, Odinarchaeota and Heimdallarchaeota suggested to comprise the closest archaeal relatives of eukaryotes, has helped to elucidate the identity of the putative archaeal host. Whereas Lokiarchaeota are assumed to employ a hydrogen-dependent metabolism, little is known about the metabolic potential of other members of the Asgard superphylum. We infer the central metabolic pathways of Asgard archaea using comparative genomics and phylogenetics to be able to refine current models for the origin of eukaryotes. Our analyses indicate that Thorarchaeota and Lokiarchaeota encode proteins necessary for carbon fixation via the Wood-Ljungdahl pathway and for obtaining reducing equivalents from organic substrates. By contrast, Heimdallarchaeum LC2 and LC3 genomes encode enzymes potentially enabling the oxidation of organic substrates using nitrate or oxygen as electron acceptors. The gene repertoire of Heimdallarchaeum AB125 and Odinarchaeum indicates that these organisms can ferment organic substrates and conserve energy by coupling ferredoxin reoxidation to respiratory proton reduction. Altogether, our genome analyses suggest that Asgard representatives are primarily organoheterotrophs with variable capacity for hydrogen consumption and production. On this basis, we propose the 'reverse flow model', an updated symbiogenetic model for the origin of eukaryotes that involves electron or hydrogen flow from an organoheterotrophic archaeal host to a bacterial symbiont.


Assuntos
Archaea/genética , Archaea/metabolismo , Evolução Biológica , Células Eucarióticas/fisiologia , Modelos Biológicos , Filogenia , Archaea/classificação , Proteínas Arqueais/genética , Células Eucarióticas/metabolismo , Genoma Arqueal/genética , Processos Heterotróficos , Hidrogênio/metabolismo , Redes e Vias Metabólicas , Oxirredução , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA