Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(33): 21875-21882, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37566410

RESUMO

The inversion of the energies of the lowest singlet (S1) and lowest triplet (T1) excited states in violation of Hund's multiplicity rule is a rare phenomenon in stable organic molecules. S1-T1 inversion has significant consequences for the photophysics and photochemistry of organic chromophores. In this work, wave-function based ab initio computational methods were employed to explore the possibility of S1-T1 inversion in hexagonal polycyclic aromatic and heteroaromatic compounds. In these molecules, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) are two-fold degenerate. The HOMO-LUMO transition gives rise to three singlet and three triplet excited states. While the singlet-triplet energy gap ΔST, defined as the energy difference between the S1 state and the T1 state, is clearly positive for benzene, it is predicted to be close to zero for borazine, the boron nitride analogue of benzene. Although ΔST decreases with increasing size of hexagonal polycyclic aromatics, it remains positive up to circumcoronene (19 rings). However, symmetry-preserving substitution of C-C pairs by B-N groups in the interior, keeping the conjugation of the outer rim intact, results in compounds with robustly negative ΔST. These findings establish the existence of a new family of boron carbon nitrides with inverted singlet-triplet gaps.

2.
J Phys Chem B ; 127(30): 6703-6713, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37471476

RESUMO

Heptazine is the molecular core of the widely studied photocatalyst carbon nitride. By analyzing the excited-state intermolecular proton-coupled electron-transfer (PCET) reaction between a heptazine derivative and a hydrogen-atom donor substrate, we are able to spectroscopically identify the resultant heptazinyl reactive radical species on a picosecond time scale. We provide detailed spectroscopic characterization of the tri-anisole heptazine:4-methoxyphenol hydrogen-bonded intermolecular complex (TAHz:MeOPhOH), using femtosecond transient absorption spectroscopy and global analysis, to reveal distinct product absorption signatures at ∼520, 1250, and 1600 nm. We assign these product peaks to the hydrogenated TAHz radical (TAHzH•) based on control experiments utilizing 1,4-dimethoxybenzene (DMB), which initiates electron transfer without concomitant proton transfer, i.e., no excited-state PCET. Additional control experiments with radical quenchers, protonation agents, and UV-vis-NIR spectroelectrochemistry also corroborate our product peak assignments. These spectral assignments allowed us to monitor the influence of the local hydrogen-bonding environment on the resulting evolution of photochemical products from excited-state PCET of heptazines. We observe that the preassociation of heptazine with the substrate in solution is extremely sensitive to the hydrogen-bond-accepting character of the solvent. This sensitivity directly influences which product signatures we detect with time-resolved spectroscopy. The spectral signature of the TAHzH• radical assigned in this work will facilitate future in-depth analysis of heptazine and carbon nitride photochemistry. Our results may also be utilized for designing improved PCET-based photochemical systems that will require precise control over local molecular environments. Examples include applications such as preparative synthesis involving organic photoredox catalysis, on-site solar water purification, as well as photocatalytic water splitting and artificial photosynthesis.

3.
J Phys Chem Lett ; 14(24): 5648-5656, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37310800

RESUMO

Transient absorption UV pump X-ray probe spectroscopy has been established as a versatile technique for the exploration of ultrafast photoinduced dynamics in valence-excited states. In this work, an ab initio theoretical framework for the simulation of time-resolved UV pump X-ray probe spectra is presented. The method is based on the description of the radiation-matter interaction in the classical doorway-window approximation and a surface-hopping algorithm for the nonadiabatic nuclear excited-state dynamics. Using the second-order algebraic-diagrammatic construction scheme for excited states, UV pump X-ray probe signals were simulated for the carbon and nitrogen K edges of pyrazine, assuming a duration of 5 fs of the UV pump and X-ray probe pulses. It is predicted that spectra measured at the nitrogen K edge carry much richer information about the ultrafast nonadiabatic dynamics in the valence-excited states of pyrazine than those measured at the carbon K edge.

4.
J Phys Chem A ; 127(15): 3372-3380, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37022300

RESUMO

In the present work, the mechanisms of the reduction of the CO2 molecule with hydrated electrons to the hydroxyl-formyl (HOCO) radical were studied with ab initio computational methods. Hydrated hydronium radicals, H3O(H2O)n (n = 0,3,6), are considered as finite-size models of the hydrated electron in liquid water. The investigation of cluster models allows the application of high-accuracy electronic-structure methods, which are not computationally feasible in condensed-phase simulations. Reaction paths and potential-energy (PE) profiles of the proton-coupled electron-transfer reaction from hydrated H3O radicals to the CO2 molecule were explored on the ground-state PE surface. The computationally efficient unrestricted second-order Møller-Plesset method is employed, and its accuracy has been carefully benchmarked in comparison with complete-active-space self-consistent-field and multi-reference second-order perturbation calculations. The results provide insights into the interplay of electron transfer from the diffuse Rydberg-type unpaired electron of H3O to the CO2 molecule, the contraction of the electron cloud by the re-hybridization of the carbon atom of CO2, and proton transfer from the nearest water molecule to the CO2- anion, followed by Grotthus-type proton rearrangements to form stable clusters. Starting from local energy minima of hydrogen-bonded CO2-H3O(H2O)n complexes, the reaction to form HOCO-(H2O)n+1 complexes is exothermic by about 1.3 eV (125 kJ/mol). The reaction is barrier controlled with a barrier of the order of a few tenths of an electron volt, depending on size and conformation of the water cluster. This barrier is at least an order of magnitude lower than the barrier of the reaction of CO2 with any closed-shell partner molecule. The HOCO radicals can recombine by H-atom transfer (disproportionation), resulting in formic acid or a dihydroxycarbene product, as well as by the formation of a C-C bond, resulting in oxalic acid. The strong exothermicity of these radical-radical recombination reactions likely results in the fragmentation of the closed-shell products formic acid and oxalic acid, which explains the strong specificity for CO formation observed in recent experiments of Hamers and co-workers.

5.
Chem Rev ; 122(24): 17339-17396, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36278801

RESUMO

Femtosecond nonlinear spectroscopy is the main tool for the time-resolved detection of photophysical and photochemical processes. Since most systems of chemical interest are rather complex, theoretical support is indispensable for the extraction of the intrinsic system dynamics from the detected spectroscopic responses. There exist two alternative theoretical formalisms for the calculation of spectroscopic signals, the nonlinear response-function (NRF) approach and the spectroscopic equation-of-motion (EOM) approach. In the NRF formalism, the system-field interaction is assumed to be sufficiently weak and is treated in lowest-order perturbation theory for each laser pulse interacting with the sample. The conceptual alternative to the NRF method is the extraction of the spectroscopic signals from the solutions of quantum mechanical, semiclassical, or quasiclassical EOMs which govern the time evolution of the material system interacting with the radiation field of the laser pulses. The NRF formalism and its applications to a broad range of material systems and spectroscopic signals have been comprehensively reviewed in the literature. This article provides a detailed review of the suite of EOM methods, including applications to 4-wave-mixing and N-wave-mixing signals detected with weak or strong fields. Under certain circumstances, the spectroscopic EOM methods may be more efficient than the NRF method for the computation of various nonlinear spectroscopic signals.


Assuntos
Lasers , Luz , Análise Espectral/métodos
6.
Phys Chem Chem Phys ; 24(24): 14836-14845, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35697028

RESUMO

UV irradiation of RNA leads to the formation of intra- and inter-strand crosslinks of cyclobutane type. Despite the importance of this reaction, relatively little is known about how the mutual orientation of the two bases affects the outcome of the reaction. Here we report a comparative nonadiabatic molecular dynamics study of face-to-back (F2B) and face-to-face (F2F) stacked uracil-water clusters. The computations were performed using the second-order algebraic-diagrammatic-construction (ADC(2)) method. We found that F2B stacked uracil-water clusters either relax non-reactively to the ground state by an ethylenic twist around the CC bond or remain in the lowest nπ* state in which the two bases gradually move away from each other. This finding is consistent with the low propensity for the formation of intra-strand cyclobutane dimers between adjacent RNA bases. On the contrary, in F2F stacked uracil-water clusters, in addition to non-reactive deactivation, we found a pro-reactive deactivation pathway, which may lead to the formation of cyclobutane uracil dimers in the electronic ground state. On a qualitative level, the observed photodynamics of F2F stacked uracil-water clusters explains the greater propensity of RNA to form inter-strand cyclobutane-type crosslinks.


Assuntos
Ciclobutanos , Dímeros de Pirimidina , Dímeros de Pirimidina/química , RNA , Raios Ultravioleta , Uracila/química , Água
7.
Phys Chem Chem Phys ; 24(26): 15925-15936, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35726762

RESUMO

The excited-state proton-coupled electron-transfer (PCET) reaction in hydrogen-bonded complexes of trianisoleheptazine (TAHz), a chromophore related to polymeric carbon nitrides widely used in hydrogen-evolution photocatalysis, with several phenol derivatives were recently studied by Schlenker and coworkers with time-resolved photoluminescence quenching and pump-probe experiments. A pronounced dependence of the PCET reactivity on the electron-donating/electron-withdrawing character of the substituents on phenol was found, with indications of a barrierless or nearly barrierless PCET reaction for the most strongly electron-donating substituent, methoxy. In the present work, the excited-state PCET dynamics was explored with first-principles nonadiabatic dynamics simulations using the TDDFT/ωB97X-D electronic-structure model for two selected complexes, TAHz-phenol and TAHz-methoxyphenol. The qualitative reliability of the TDDFT/ωB97X-D electronic-structure model was assessed by extensive benchmarking of excitation energies and potential-energy profiles against a wave-function-based ab initio method, the algebraic-diagrammatic construction of second order (ADC(2)). The nonadiabatic dynamics simulations provide temporally and structurally resolved insights into paradigmatic PCET reactions in TAHz-phenol complexes. The radiationless relaxation of the photoexcited bright 1ππ* state to the long-lived dark S1 state of TAHz occurs in less than 100 fs. The ensuing PCET reaction on the adiabatic S1 surface is faster in TAHz-methoxyphenol complexes than in TAHz-phenol complexes due to a lower H-atom-transfer barrier, as observed in the experiments. The relaxation of the complexes to the electronic ground state is found to occur exclusively via PCET within the 250 fs time window covered by the present simulations, confirming the essential role of the hydrogen bond for the fluorescence quenching process. The absolute values of the computed PCET time constants are significantly shorter than those extracted from time-resolved photoluminescence measurements for mixtures of TAHz with phenolic substrates in toluene. The possible origins of this discrepancy are discussed.

8.
J Phys Chem A ; 126(18): 2778-2787, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35476421

RESUMO

The photocatalytic conversion of carbon dioxide to liquid fuels with electrons taken from water with solar photons is one of the grand goals of renewable energy research. Polymeric carbon nitrides recently emerged as metal-free materials with promising functionalities for hydrogen evolution from water as well as the activation of carbon dioxide. Molecular heptazine (Hz), the building block of polymeric carbon nitrides, is one the strongest known organic photo-oxidants and has been shown to be able to photo-oxidize water with near-visible light, resulting in reduced (hydrogenated) heptazine (HzH) and OH radicals. In the present work, we explored with ab initio computational methods whether the HzH chromophore is able to reduce carbon dioxide to the hydroxy-formyl (HOCO) radical in hydrogen-bonded HzH-CO2 complexes by the absorption of a photon. In remarkable contrast to the high barrier for carbon dioxide activation in the electronic ground state, the excited-state proton-coupled electron transfer (PCET) reaction is nearly barrierless, but requires the diabatic passage of three conical intersections. The possibility of barrierless carbon dioxide activation by excited-state PCET has so far not been taken into consideration in the interpretation of photocatalytic carbon dioxide reduction on carbon nitride materials.

9.
J Phys Chem B ; 126(15): 2777-2788, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35385277

RESUMO

In this Perspective, we discuss a novel water-splitting scenario, namely the direct oxidation of water molecules by organic photooxidants in hydrogen-bonded chromophore-water complexes. In comparison with the established scenario of semiconductor-based water splitting, the distance of electron transfer processes is thereby reduced from mesoscopic scales to the Ångström scale, and the time scale is reduced from milliseconds to femtoseconds, which suppresses competing loss processes. The concept is illustrated by computational studies for the heptazine-H2O complex. The excited-state landscape of this complex has been characterized with ab initio electronic-structure methods and the proton-coupled electron-transfer dynamics has been explored with nonadiabatic dynamics simulations. A unique feature of the heptazine chromophore is the existence of a low-lying and exceptionally long-lived 1ππ* state in which a substantial part of the photon energy can be stored for hundreds of nanoseconds and is available for the oxidation of water molecules. The calculations reveal that the absorption spectra and the photochemical functionalities of heptazine chromophores can be systematically tailored by chemical substitution. The options of harvesting hydrogen and the problems posed by the high reactivity of OH radicals are discussed.


Assuntos
Hidrogênio , Água , Transporte de Elétrons , Ligação de Hidrogênio , Prótons , Água/química
10.
J Phys Chem Lett ; 12(48): 11736-11744, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34851116

RESUMO

Two-dimensional (2D) electronic spectroscopy is a powerful nonlinear technique which provides spectroscopic information on two frequency axes as well as dynamical information as a function of the so-called waiting time. Herein, an ab initio theoretical framework for the simulation of electronic 2D spectra has been developed. The method is based on the classical approximation to the doorway-window representation of three-pulse photon-echo signals and the description of nuclear motion by classical trajectories. Nonadiabatic effects are taken into account by a trajectory surface-hopping algorithm. 2D electronic spectra were simulated with ab initio on-the-fly trajectory calculations using the ADC(2) electronic-structure method for the pyrazine molecule, which is a benchmark system for ultrafast radiationless decay through conical intersections. It is demonstrated that 2D spectroscopy with subfemtosecond UV pulses can provide unprecedented detailed information on the ultrafast photodynamics of polyatomic molecules.

11.
J Phys Chem A ; 125(45): 9917-9931, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34748705

RESUMO

In the past decade, polymeric carbon nitrides consisting of heptazine (Hz) building blocks emerged as highly promising materials for photocatalytic hydrogen evolution from water or sacrificial electron donors with near-ultraviolet light. However, the complexity of these materials and their poor characterization at the atomic level are detrimental to the unraveling of the detailed mechanisms of the reactions leading to hydrogen evolution. Recently, it has been shown that a derivative of the Hz molecule, trianisole-heptazine (TAHz), is a potent photobase, which readily oxidizes various derivatives of phenol and even water by an excited-state proton-coupled electron-transfer (PCET) reaction. Energy profiles along minimum-energy reaction paths and relaxed PCET potential-energy surfaces, which previously were computed with ab initio electronic-structure methods for complexes of Hz and TAHz with protic substrates, led to qualitative insights. To obtain more quantitative insight, reaction dynamics simulations are required. In the present work, the time scales of the electron and proton transfer processes and the branching ratios of competing channels were explored with ab initio on-the-fly quasiclassical surface-hopping trajectory simulations for the hydrogen-bonded Hz-H2O complex. By the analysis of representative trajectories, detailed insight into the interplay of various nonadiabatic electronic transitions, electron transfer, proton transfer, and vibrational energy relaxation is obtained. The HzH radicals which are formed by the photoreduction of Hz can disproportionate to Hz and HzH2 in an exothermic reaction with a low reaction barrier. The time scales and branching ratios of competing channels in H-atom photodetachment from the HzH2 molecule also were explored with ab initio surface-hopping simulations. These results delineate for the first time a quantitatively supported scenario of water oxidation and hydrogen evolution with a molecular carbon nitride photocatalyst.

12.
J Chem Phys ; 155(8): 080401, 2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34470339
13.
J Chem Theory Comput ; 17(8): 5098-5109, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34269561

RESUMO

A computational protocol for simulating time-resolved photoelectron signals of medium-sized molecules is presented. The procedure is based on a trajectory surface-hopping description of the excited-state dynamics and a combined Dyson orbital and multicenter B-spline approach for the computation of cross sections and asymmetry parameters. The accuracy of the procedure has been illustrated for the case of ultrafast internal conversion of gas-phase pyrazine excited to the 1B2u(ππ*) state. The simulated spectra and the asymmetry map are compared to the experimental data, and a very good agreement was obtained without applying any energy-dependent rescaling or broadening. An interesting side result of this work is the finding that the signature of the 1Au(nπ*) state is indistinguishable from that of the 1B3u(nπ*) state in the time-resolved photoelectron spectrum. By locating four symmetrically equivalent minima on the lowest-excited (S1) adiabatic potential energy surface of pyrazine, we revealed the strong vibronic coupling of the 1Au(nπ*) and 1B3u(nπ*) states near the S1 ← S0 band origin.

14.
J Phys Chem Lett ; 12(29): 6852-6860, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34279950

RESUMO

Two chromophores derived from heptazine, HAP-3MF and HAP-3TPA, were synthesized and tested as emitters in light-emitting diodes (OLEDs) by Adachi and co-workers. Both emitters were shown to exhibit quantum efficiencies which exceed the theoretical maximum of conventional fluorescent OLEDs. The enhanced emission efficiency was explained by the mechanism of thermally activated delayed fluorescence (TADF). In the present work, the electronic excitation energies and essential features of the topography of the excited-state potential-energy surfaces of HAP-3MF and HAP-3TPA have been investigated with a wave function-based ab initio method (ADC(2)). It is found that HAP-3MF is an inverted singlet-triplet (IST) system; that is, the energies of the S1 and T1 states are robustly inverted in violation of Hund's multiplicity rule. Notably, HAP-3MF presumably is the first IST emitter which was implemented in an OLED device. In HAP-3TPA, on the other hand, the vertical excitation energies of the S1 and T1 states are essentially degenerate. The excited states exhibit vibrational stabilization energies of similar magnitude along different relaxation coordinates, resulting in adiabatic excitation energies which also are nearly degenerate. HAP-3TPA is found to be a chromophore at the borderline of TADF and IST systems. The spectroscopic data reported by Adachi and co-workers for HAP-3MF and HAP-3TPA are analyzed in light of these computational results.

15.
Phys Chem Chem Phys ; 23(23): 12968-12975, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34059871

RESUMO

It has recently been shown that cycl[3.3.3]azine and heptazine (1,3,4,6,7,9,9b-heptaazaphenalene) as well as related azaphenalenes exhibit inverted singlet and triplet states, that is, the energy of the lowest singlet excited state (S1) is below the energy of the lowest triplet excited state (T1). This feature is unique among all known aromatic chromophores and is of outstanding relevance for applications in photocatalysis and organic optoelectronics. Heptazine is the building block of the polymeric material graphitic carbon nitride which is an extensively explored photocatalyst in hydrogen evolution photocatalysis. Derivatives of heptazine have also been identified as efficient emitters in organic light emitting diodes (OLEDs). In both areas, the inverted singlet-triplet gap of heptazine is a highly beneficial feature. In photocatalysis, the absence of a long-lived triplet state eliminates the activation of atmospheric oxygen, which is favourable for long-term operational stability. In optoelectronics, singlet-triplet inversion implies the possibility of 100% fluorescence efficiency of electron-hole recombination. However, the absorption and luminescence wavelengths of heptazine and the S1-S0 transition dipole moment are difficult to tune for optimal functionality. In this work, we employed high-level ab initio electronic structure theory to devise and characterize a large family of novel heteroaromatic chromophores, the triangular boron carbon nitrides. These novel heterocycles inherit essential spectroscopic features from heptazine, in particular the inverted singlet-triplet gap, while their absorption and luminescence spectra and transition dipole moments are widely tuneable. For applications in photocatalysis, the wavelength of the absorption maximum can be tuned to improve the overlap with the solar spectrum at the surface of earth. For applications in OLEDs, the colour of emission can be adjusted and the fluorescence yield can be enhanced.

16.
J Chem Phys ; 154(12): 124305, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33810698

RESUMO

We present a first-principles study of the static and dynamic aspects of the strong Jahn-Teller (JT) and pseudo-JT (PJT) effects in niobium tetrafluoride, NbF4, in the manifold of its electronic ground state, 2E, and its first excited state, 2T2. The complex topography of the full-dimensional multi-sheeted adiabatic JT/PJT surfaces is analyzed computationally at the complete-active-space self-consistent-field (CASSCF) and multireference second-order perturbation levels of electronic structure theory, providing a detailed characterization of minima, saddle points, and minimum-energy conical intersection points. The calculations reveal that the tetrahedral (Td) configuration of NbF4 undergoes strong JT distortions along the bending mode of e symmetry, yielding tetragonal molecular structures of D2d symmetry with Td → D2d stabilization energies of about 2000 cm-1 in the X̃2E state and about 6400 cm-1 in the Ã2T2 state. In addition, there exists strong X̃2E-Ã2T2 PJT coupling via the bending mode of t2 symmetry, which becomes important near the crossing seam of the X̃2E and Ã2T2 potential energy surfaces. A five-state five-mode JT/PJT vibronic-coupling Hamiltonian is constructed in terms of symmetry-invariant polynomial expansions of the X̃2E and Ã2T2 diabatic potential energy surfaces in the e and t2 bending coordinates. The parameters of the Hamiltonian are determined by a least-squares fit of its eigenvalues to the CASSCF ab initio data. The vibronic spectra and the time evolution of adiabatic electronic population probabilities are computed with the multi-configuration time-dependent Hartree method. The complexity of the spectra reflects the effects of the exceptionally strong E × e and T2 × e JT couplings and (E + T2) × (e + t2) PJT coupling. The time evolution of the populations of the adiabatic electronic states after the initial preparation of the Ã2T2 state reveals the femtosecond nonadiabatic dynamics through a multidimensional seam of conical intersection. These results represent the first study of the static and dynamical JT/PJT effects in the X̃2E and Ã2T2 electronic states of NbF4.

17.
J Chem Theory Comput ; 17(4): 2394-2408, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33755464

RESUMO

An ab initio theoretical framework for the simulation of femtosecond time-resolved transient absorption (TA) pump-probe (PP) spectra with quasi-classical trajectories is presented. The simulations are based on the classical approximation to the doorway-window (DW) representation of third-order four-wave-mixing signals. The DW formula accounts for the finite duration and spectral shape of the pump and probe pulses. In the classical DW formalism, classical trajectories are stochastically sampled from a positive definite doorway distribution, and the signals are evaluated by averaging over a positive definite window distribution. Nonadiabatic excited-state dynamics is described by a stochastic surface-hopping algorithm. The method has been implemented for the pyrazine molecule with the second-order algebraic-diagrammatic construction (ADC(2)) ab initio electronic-structure method. The methodology is illustrated by ab initio simulations of the ground-state bleach, stimulated emission, and excited-state absorption contributions to the TA PP spectrum of gas-phase pyrazine.

18.
Phys Chem Chem Phys ; 23(4): 2594-2604, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33475644

RESUMO

Despite many studies, the mechanisms of nonradiative relaxation of uracil in the gas phase and in aqueous solution are still not fully resolved. Here we combine theoretical UV absorption spectroscopy with nonadiabatic dynamics simulations to identify the photophysical mechanisms that can give rise to experimentally observed decay time constants. We first compute and theoretically assign the electronic spectra of uracil using the second-order algebraic-diagrammatic-construction (ADC(2)) method. The obtained electronic states, their energy differences and state-specific solvation effects are the prerequisites for understanding the photodynamics. We then use nonadiabatic trajectory-surface-hopping dynamics simulations to investigate the photoinduced dynamics of uracil and uracil-water clusters. In contrast to previous studies, we found that a single mechanism - the ethylenic twist around the C[double bond, length as m-dash]C bond - is responsible for the ultrafast component of the nonradiative decay, both in the gas phase and in solution. Very good agreement with the experimentally determined ultrashort decay time constants is obtained.


Assuntos
Uracila/química , Água/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Espectrofotometria Ultravioleta , Uracila/efeitos da radiação
19.
J Chem Phys ; 153(17): 174111, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33167631

RESUMO

We studied spectroscopic signatures of the nonadiabatic dynamics at conical intersections formed by the lowest excited singlet states in pyrazine. We considered two ab initio models of conical intersections in the excited states of pyrazine developed by Sala et al. [Phys. Chem. Chem. Phys. 16, 15957 (2014)]: a two-state (B2u and B3u), five-mode model and a three-state (B2u, B3u, and Au), nine-mode model. We simulated the signals of three widely used techniques: time- and frequency-resolved fluorescence spectroscopy, transient absorption pump-probe spectroscopy, and electronic two-dimensional spectroscopy. The signals were calculated through third-order response functions, which, in turn, were evaluated with the numerically accurate multiple Davydov ansatz. We establish spectroscopic signatures of the optically dark Au state and demonstrate that the key features of the photoinduced dynamics, such as electronic/nuclear populations, electronic/nuclear coherences, and electronic/nuclear energy transfer processes, are imprinted in the spectroscopic signals. We show that a fairly complete picture of the nonadiabatic dynamics at conical intersections can be obtained when several spectroscopic techniques are combined. Provided that the time resolution is sufficient, time- and frequency-resolved fluorescence may provide the best visualization of the nonadiabatic dynamics near conical intersections.

20.
Opt Express ; 28(18): 25806-25829, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32906864

RESUMO

The effects of high pulse intensity and chirp on two-dimensional electronic spectroscopy signals are experimentally investigated in the highly non-perturbative regime using atomic rubidium vapor as clean model system. Data analysis is performed based on higher-order Feynman diagrams and non-perturbative numerical simulations of the system response. It is shown that higher-order contributions may lead to a fundamental change of the static appearance and beating-maps of the 2D spectra and that chirped pulses enhance or suppress distinct higher-order pathways. We further give an estimate of the threshold intensity beyond which the high-intensity effects become visible for the system under consideration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA