Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 42(8): 1993-2003, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38388237

RESUMO

Q fever in humans is caused by Coxiella (C.) burnetii. In 2008 and 2012, cases of Q fever in humans were linked to an infected flock of approximately 650 ewes. Since 2013 gimmers (G'13, G'14, G'15 etc.) were primary vaccinated (two doses) with an inactivated C.burnetii vaccine without any revaccination. In 2013, 30 ewes were primary vaccinated (A'13). Shedding was annually monitored by qPCR-testing of vaginal and nasal swabs collected at lambing. Animals were tested for Phase I- (PhI) and PhII-antibodies (Ab) and for PhII-specific-interferon-γ (IFN-γ) before and after vaccination. The effect of a revaccination was determined in 2018 and 2023. Groups of randomly selected gimmers primary vaccinated in 2015, 2016 and 2017 and a mixed group of older animals (A'13, G'13 and G'14) were revaccinated once in 2018. The trial was repeated in 2023 on groups primary vaccinated in 2019-2023. Major shedding after the outbreak in 2012 ceased in 2014. Thereafter C.burnetii was only sporadically detected at low-level in 2018, 2021 and 2023. Sheep naturally exposed to C.burnetii during the outbreak in 2012 (A'13, G'13) mounted a strong and complete (PhI, PhII, IFN-γ) recall immune response after vaccination. A serological PhI+/PhII+ pattern dominated after vaccination. In contrast, since 2014 a weaker immune response (PhII-titre, IFN-γ) and a dominance of the PhI-/PhII+ pattern was observed in vaccinated gimmers. The number of serologically non-responding gimmers to vaccination increased to 25.0 % in G'16/G'17 and 40.4 % in G'19/G'20. But revaccination even three (G'15 in 2018) and four (G'19 in 2023) years after primary vaccination resulted in a strong and complete immune response. No difference of the immune response nor to more recently primary vaccinated animals (G'23 in 2023) nor to those animals that were present during the outbreak (A'13/G'13/G'14 in 2018) was observed.


Assuntos
Coxiella burnetii , Febre Q , Humanos , Ovinos , Animais , Feminino , Febre Q/prevenção & controle , Febre Q/veterinária , Febre Q/epidemiologia , Anticorpos , Vacinas Bacterianas , Imunidade
2.
Vaccine ; 40(35): 5197-5206, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35914960

RESUMO

Coxiella (C.) burnetii, a Gram-negative intracellular bacterium, causes Q fever in humans and Coxiellosis in animals. Ruminants are a primary source of human infection with C.burnetii. In 2013, vaccination was implemented in a sheep flock with 650 ewes associated with two outbreaks of Q fever in humans in 2008 and 2012. Only gimmers (yearlings) received two doses of a commercial C.burnetii phase I whole cell vaccine three weeks apart (primary vaccination) without any revaccination. Vaginal and nasal swabs collected shortly after lambing were tested by qPCR. Additionally, a group of non-vaccinated sentinels was serologically monitored for phase I (PhI), II (PhII) antibodies and for Interferon γ (IFN-γ) after stimulation of whole blood cells with PhII-antigen with and without an IL-10-neutralizing monoclonal antibody. In 2021, 679 sera collected in 2014-2021 were retested retrospectively with three commercial ELISA kits and one batch of an in-house PhI/PhII-ELISA. A low-level shedding of C.burnetii (<103 mean C.burnetii/swab) was observed until 2014. In 2021 C.burnetii was detected in two animals (<103.1C.burnetii/swab), but vaginal swabs collected at two subsequent lambing seasons remained negative. Seroconversion of sentinels was detected until 2017. However, the retrospective analysis of sentinels in 2021 revealed additional single seropositive animals from 2018 to 2021. IFN-γ reactivity was observed during the whole study period; it peaked in 2014 and in 2018 and decreased thereafter. The sporadic detection of C.burnetii and the immune responses of sentinels suggested that a subliminal infection persisted despite vaccination. Nevertheless, vaccination of gimmers prevented the development of a major outbreak, it controlled the infection and reduced the risk of human infection.


Assuntos
Coxiella burnetii , Febre Q , Doenças dos Ovinos , Animais , Feminino , Humanos , Febre Q/epidemiologia , Febre Q/prevenção & controle , Febre Q/veterinária , Estudos Retrospectivos , Ovinos , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/microbiologia , Doenças dos Ovinos/prevenção & controle , Vacinação/veterinária
3.
Viruses ; 12(9)2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899808

RESUMO

Recently, several so-called "atypical" Bluetongue virus (BTV) serotypes were discovered, including BTV-25 (Toggenburg virus), in Switzerland. Most "atypical" BTV were identified in small ruminants without clinical signs. In 2018, two goats from a holding in Germany tested positive for BTV-25 genome by RT-qPCR prior to export. After experimental inoculation of the two goats with the BTV-25 positive field blood samples for generation of reference materials, viremia could be observed in one animal. For the first time, the BTV-25-related virus was isolated in cell culture from EDTA-blood and the full genome of isolate "BTV-25-GER2018" could be generated. BTV-25-GER2018 was only incompletely neutralized by ELISA-positive sera. We could monitor the BTV-25 occurrence in the respective affected goat flock of approximately 120 goats over several years. EDTA blood samples were screened with RT-qPCR using a newly developed BTV-25 specific assay. For serological surveillance, serum samples were screened using a commercial cELISA. BTV-25-GER2018 was detected over 4.5 years in the goat flock with intermittent PCR-positivity in some animals, and with or without concomitantly detected antibodies since 2015. We could demonstrate the viral persistence of BTV-25-GER2018 in goats for up to 4.5 years, and the first BTV-25 isolate is now available for further characterization.


Assuntos
Vírus Bluetongue/isolamento & purificação , Bluetongue/virologia , Doenças das Cabras/virologia , Animais , Anticorpos Antivirais/sangue , Sangue/virologia , Bluetongue/sangue , Vírus Bluetongue/classificação , Vírus Bluetongue/genética , Vírus Bluetongue/crescimento & desenvolvimento , Genoma Viral , Doenças das Cabras/sangue , Cabras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA