Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Signal ; 13(634)2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32487715

RESUMO

The dysregulation of multiple signaling pathways, including those through endosomal Toll-like receptors (TLRs), Fc gamma receptors (FcγR), and antigen receptors in B cells (BCR), promote an autoinflammatory loop in systemic lupus erythematosus (SLE). Here, we used selective small-molecule inhibitors to assess the regulatory roles of interleukin-1 receptor (IL-1R)-associated kinase 4 (IRAK4) and Bruton's tyrosine kinase (BTK) in these pathways. The inhibition of IRAK4 repressed SLE immune complex- and TLR7-mediated activation of human plasmacytoid dendritic cells (pDCs). Correspondingly, the expression of interferon (IFN)-responsive genes (IRGs) in cells and in mice was positively regulated by the kinase activity of IRAK4. Both IRAK4 and BTK inhibition reduced the TLR7-mediated differentiation of human memory B cells into plasmablasts. TLR7-dependent inflammatory responses were differentially regulated by IRAK4 and BTK by cell type: In pDCs, IRAK4 positively regulated NF-κB and MAPK signaling, whereas in B cells, NF-κB and MAPK pathways were regulated by both BTK and IRAK4. In the pristane-induced lupus mouse model, inhibition of IRAK4 reduced the expression of IRGs during disease onset. Mice engineered to express kinase-deficient IRAK4 were protected from both chemical (pristane-induced) and genetic (NZB/W_F1 hybrid) models of lupus development. Our findings suggest that kinase inhibitors of IRAK4 might be a therapeutic in patients with SLE.


Assuntos
Células Dendríticas/metabolismo , Endossomos/metabolismo , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Glicoproteínas de Membrana/metabolismo , Plasmócitos/metabolismo , Transdução de Sinais , Receptor 7 Toll-Like/metabolismo , Tirosina Quinase da Agamaglobulinemia , Animais , Endossomos/genética , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Glicoproteínas de Membrana/genética , Camundongos , Receptor 7 Toll-Like/genética
2.
Cell Rep ; 16(2): 583-595, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27373151

RESUMO

We introduce neutron-encoded (NeuCode) amino acid labeling of mice as a strategy for multiplexed proteomic analysis in vivo. Using NeuCode, we characterize an inducible knockout mouse model of Bap1, a tumor suppressor and deubiquitinase whose in vivo roles outside of cancer are not well established. NeuCode proteomics revealed altered metabolic pathways following Bap1 deletion, including profound elevation of cholesterol biosynthetic machinery coincident with reduced expression of gluconeogenic and lipid homeostasis proteins in liver. Bap1 loss increased pancreatitis biomarkers and reduced expression of mitochondrial proteins. These alterations accompany a metabolic remodeling with hypoglycemia, hypercholesterolemia, hepatic lipid loss, and acinar cell degeneration. Liver-specific Bap1 null mice present with fully penetrant perinatal lethality, severe hypoglycemia, and hepatic lipid deficiency. This work reveals Bap1 as a metabolic regulator in liver and pancreas, and it establishes NeuCode as a reliable proteomic method for deciphering in vivo biology.


Assuntos
Proteômica/métodos , Proteínas Supressoras de Tumor/fisiologia , Ubiquitina Tiolesterase/fisiologia , Animais , Hematopoese , Histonas/metabolismo , Marcação por Isótopo , Metabolismo dos Lipídeos , Lisina/metabolismo , Masculino , Redes e Vias Metabólicas , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias Hepáticas/metabolismo , Pâncreas/metabolismo , Proteoma/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA