Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
NPJ Parkinsons Dis ; 9(1): 160, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062033

RESUMO

There is a paucity of genetic characterization in people with Parkinson's disease (PD) of Latino and Afro-Caribbean descent. Screening LRRK2 and GBA variants in 32 New Yorkers of Puerto Rican ethnicity with PD and in 119 non-Hispanic-non-Jewish European PD cases revealed that Puerto Rican participants were more likely to harbor the LRRK2-p.G2019S variant (15.6% vs. 4.2%, respectively). Additionally, whole exome sequencing of twelve Puerto Rican and Dominican PD participants was performed as an exploratory study.

2.
Ann Neurol ; 93(5): 999-1011, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36646669

RESUMO

In neurodegenerative diseases, the characterization of the prodromal phase is essential for the future application of disease-modifying therapies. X-linked dystonia-parkinsonism is a hereditary neurodegenerative movement disorder characterized by severe adult-onset dystonia accompanied by parkinsonism. Distinct striatal and pallidal atrophy is present already in early disease stages indicating a long-lasting presymptomatic degenerative process. To gain insight into the prodromal phase of X-linked dystonia-parkinsonism, structural and iron-sensitive magnetic resonance imaging (MRI) was performed in 10 non-manifesting carriers and 24 healthy controls in a double-blind fashion. Seventeen patients with X-linked dystonia-parkinsonism were recruited to replicate previous findings of basal ganglia pathology and iron accumulation. Age at onset was estimated in non-manifesting carriers and patients using the repeat length of the hexanucleotide expansion and 3 single-nucleotide polymorphisms associated with age at onset. Voxel-based morphometry and subcortical volumetry showed striatal and pallidal atrophy in non-manifesting carriers (~10%) and patients (~40%). Substantia nigra volume was similarly reduced in patients (~40%). Caudate volume correlated with time to estimated onset in non-manifesting carriers. Susceptibility-weighted imaging confirmed iron deposition in the anteromedial putamen in patients. Non-manifesting carriers also showed small clusters of iron accumulation in the same area after lowering the statistical threshold. In conclusion, basal ganglia atrophy and iron accumulation precede the clinical onset of X-linked dystonia-parkinsonism and can be detected years before the estimated disease manifestation. It thereby highlights the potential of multimodal imaging to identify clinically unaffected mutation carriers with incipient neurodegeneration and to monitor disease progression independent of clinical measures. Longitudinal studies are needed to further elucidate the onset and progression rate of neurodegeneration in prodromal X-linked dystonia-parkinsonism. ANN NEUROL 2023;93:999-1011.


Assuntos
Distúrbios Distônicos , Doenças Neurodegenerativas , Adulto , Humanos , Distúrbios Distônicos/diagnóstico por imagem , Distúrbios Distônicos/genética , Distúrbios Distônicos/complicações , Gânglios da Base/diagnóstico por imagem , Gânglios da Base/patologia , Imageamento por Ressonância Magnética , Doenças Neurodegenerativas/patologia , Atrofia/patologia , Ferro
3.
Mov Disord ; 37(7): 1474-1482, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35491955

RESUMO

BACKGROUND: Early diagnosis in patients with neurodegenerative disorders is crucial to initiate disease-modifying therapies at a time point where progressive neurodegeneration can still be modified. OBJECTIVES: The objective of this study was to determine whether motor or non-motor signs of the disease occur as indicators of a prodromal phase of X-linked dystonia-parkinsonism (XDP), a highly-penetrant monogenic movement disorder with striking basal ganglia pathology. METHODS: In addition to a comprehensive clinical assessment, sensor-based balance and gait analyses were performed in non-manifesting mutation carriers (NMCs), healthy controls (HCs), and patients with XDP. Gradient-boosted trees (GBT) methodology was utilized to classify groups of interest. RESULTS: There were no clinically overt disease manifestations in the NMCs. Balance analysis, however, revealed a classification accuracy of 90% for the comparison of NMC versus HC. For the gait analysis, the best-performing GBT-based model showed a balanced accuracy of 95% (NMC vs. HC; walking at maximum speed). Using a separate analysis of genetic modifiers, several gait parameters correlated strongly with the estimated age at disease onset in the NMC group. CONCLUSIONS: Our study unraveled balance and gait abnormalities in NMCs that preceded the onset of XDP. These findings demonstrate prodromal motor changes among NMCs who will develop XDP with a very high likelihood in the future. Gait abnormalities had a predictive value for the estimated age at onset highlighting the impact of genetic modifiers in personalized treatment in monogenic neurodegenerative disorders. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Distúrbios Distônicos , Doenças Genéticas Ligadas ao Cromossomo X , Gânglios da Base/patologia , Distúrbios Distônicos/genética , Distúrbios Distônicos/patologia , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Doenças Genéticas Ligadas ao Cromossomo X/genética , Humanos , Fenótipo
4.
Am J Hum Genet ; 108(11): 2145-2158, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34672987

RESUMO

Dystonia is a neurologic disorder associated with an increasingly large number of genetic variants in many genes, resulting in characteristic disturbances in volitional movement. Dissecting the relationships between these mutations and their functional outcomes is critical in understanding the pathways that drive dystonia pathogenesis. Here we established a pipeline for characterizing an allelic series of dystonia-specific mutations. We used this strategy to investigate the molecular consequences of genetic variation in THAP1, which encodes a transcription factor linked to neural differentiation. Multiple pathogenic mutations associated with dystonia cluster within distinct THAP1 functional domains and are predicted to alter DNA-binding properties and/or protein interactions differently, yet the relative impact of these varied changes on molecular signatures and neural deficits is unclear. To determine the effects of these mutations on THAP1 transcriptional activity, we engineered an allelic series of eight alterations in a common induced pluripotent stem cell background and differentiated these lines into a panel of near-isogenic neural stem cells (n = 94 lines). Transcriptome profiling followed by joint analysis of the most robust signatures across mutations identified a convergent pattern of dysregulated genes functionally related to neurodevelopment, lysosomal lipid metabolism, and myelin. On the basis of these observations, we examined mice bearing Thap1-disruptive alleles and detected significant changes in myelin gene expression and reduction of myelin structural integrity relative to control mice. These results suggest that deficits in neurodevelopment and myelination are common consequences of dystonia-associated THAP1 mutations and highlight the potential role of neuron-glial interactions in the pathogenesis of dystonia.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Proteínas de Ligação a DNA/genética , Distonia/genética , Distúrbios Distônicos/genética , Mutação , Bainha de Mielina/genética , Alelos , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Camundongos
5.
Mov Disord ; 36(11): 2468-2480, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34432325

RESUMO

This systematic MDSGene review covers individuals with confirmed genetic forms of primary familial brain calcification (PFBC) available in the literature. Data on 516 (47% men) individuals, carrying heterozygous variants in SLC20A2 (solute carrier family 20 member 2, 61%), PDGFB (platelet-derived growth factor subunit B, 12%), XPR1 (xenotropic and polytropic retrovirus receptor, 16%), or PDGFRB (platelet-derived growth factor receptor beta, 5%) or biallelic variants in MYORG (myogenesis-regulating glycosidase, 13%) or JAM2 (junctional adhesion molecule 2, 2%), were extracted from 93 articles. Nearly one-third of the mutation carriers were clinically unaffected. Carriers of PDGFRB variants were more likely to be clinically unaffected (~54%), and the penetrance of SLC20A2 and XPR1 variants (<70%) was lower in comparison to the remaining three genes (>85%). Among the 349 clinically affected patients, 27% showed only motor and 31% only nonmotor symptoms/signs, whereas the remaining 42% had a combination thereof. While parkinsonism and speech disturbance were the most frequently reported motor manifestations, cognitive deficits, headache, and depression were the major nonmotor symptoms/signs. The basal ganglia were always calcified, and the cerebellum, thalamus, and white matter contained calcifications in 58%, 53%, and 43%, respectively, of individuals. In autosomal-dominant PFBC, mutation severity influenced the number of calcified brain areas, which in turn correlated with the clinical status, whereby the risk of developing symptoms/signs more than doubled for each additional region with calcifications. Our systematic analysis provides the most comprehensive insight into genetic, clinical, and neuroimaging features of known PFBC forms, to date. In addition, it puts forth the penetrance estimates and newly discovered genotype-phenotype relations that will improve counseling of individuals with mutations in PFBC genes. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Encefalopatias , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encefalopatias/genética , Genes sis , Heterozigoto , Humanos , Mutação , Fenótipo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética
6.
Nat Commun ; 12(1): 3216, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050153

RESUMO

X-linked dystonia-parkinsonism is a neurodegenerative disorder caused by a founder retrotransposon insertion, in which a polymorphic hexanucleotide repeat accounts for ~50% of age at onset variability. Employing a genome-wide association study to identify additional factors modifying age at onset, we establish that three independent loci are significantly associated with age at onset (p < 5 × 10-8). The lead single nucleotide polymorphisms collectively account for 25.6% of the remaining variance not explained by the hexanucleotide repeat and 13.0% of the overall variance in age at onset in X-linked dystonia-parkinsonism with the protective alleles delaying disease onset by seven years. These regions harbor or lie adjacent to MSH3 and PMS2, the genes that were recently implicated in modifying age at onset in Huntington's disease, likely through a common pathway influencing repeat instability. Our work indicates the existence of three modifiers of age at onset in X-linked dystonia-parkinsonism that likely affect the DNA mismatch repair pathway.


Assuntos
Distúrbios Distônicos/genética , Genes Modificadores , Doenças Genéticas Ligadas ao Cromossomo X/genética , Loci Gênicos , Penetrância , Adulto , Idade de Início , Idoso , Alelos , Estudos de Casos e Controles , Reparo de Erro de Pareamento de DNA , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Fatores de Proteção , Adulto Jovem
7.
Mov Disord ; 36(5): 1086-1103, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33502045

RESUMO

This comprehensive MDSGene review is devoted to 7 genes - TOR1A, THAP1, GNAL, ANO3, PRKRA, KMT2B, and HPCA - mutations in which may cause isolated dystonia. It followed MDSGene's standardized data extraction protocol and screened a total of ~1200 citations. Phenotypic and genotypic data on ~1200 patients with 254 different mutations were curated and analyzed. There were differences regarding age at onset, site of onset, and distribution of symptoms across mutation carriers in all 7 genes. Although carriers of TOR1A, THAP1, PRKRA, KMT2B, or HPCA mutations mostly showed childhood and adolescent onset, patients with GNAL and ANO3 mutations often developed first symptoms in adulthood. GNAL and KMT2B mutation carriers frequently have 1 predominant site of onset, that is, the neck (GNAL) or the lower limbs (KMT2B), whereas site of onset in DYT-TOR1A, DYT-THAP1, DYT-ANO3, DYT-PRKRA, and DYT-HPCA was broader. However, in most DYT-THAP1 and DYT-ANO3 patients, dystonia first manifested in the upper half of the body (upper limb, neck, and craniofacial/laryngeal), whereas onset in DYT-TOR1A, DYT-PRKRA and DYT-HPCA was frequently observed in an extremity, including both upper and lower ones. For ANO3, a segmental/multifocal distribution was typical, whereas TOR1A, PRKRA, KMT2B, and HPCA mutation carriers commonly developed generalized dystonia. THAP1 mutation carriers presented with focal, segmental/multifocal, or generalized dystonia in almost equal proportions. GNAL mutation carriers rarely showed generalization. This review provides a comprehensive overview of the current knowledge of hereditary isolated dystonia. The data are also available in an online database (http://www.mdsgene.org), which additionally offers descriptive summary statistics. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Distonia , Distúrbios Distônicos , Adolescente , Adulto , Anoctaminas , Proteínas Reguladoras de Apoptose/genética , Criança , Proteínas de Ligação a DNA/genética , Distonia/genética , Genótipo , Humanos , Chaperonas Moleculares , Mutação/genética , Fenótipo
8.
J Neural Transm (Vienna) ; 128(4): 405-416, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33247415

RESUMO

Four genes associated with isolated dystonia are currently well replicated and validated. DYT-THAP1 manifests as young-onset generalized dystonia with predominant craniocervical symptoms; and is associated with mostly deleterious missense variation in the THAP1 gene. De novo and inherited missense and protein truncating variation in GNAL as well as primarily missense variation in ANO3 cause isolated focal and/or segmental dystonia with preference for the upper half of the body and older ages at onset. The GAG deletion in TOR1A is associated with generalized dystonia with onset in childhood in the lower limbs. Rare variation in these genes causes monogenic sporadic and inherited forms of isolated dystonia; common variation may confer risk and imply that dystonia is a polygenic trait in a subset of cases. Although candidate gene screens have been successful in the past in detecting gene-disease associations, recent application of whole-genome and whole-exome sequencing methods enable unbiased capture of all genetic variation that may explain the phenotype. However, careful variant-level evaluation is necessary in every case, even in genes that have previously been associated with disease. We review the genetic architecture and phenotype of DYT-THAP1, DYT-GNAL, DYT-ANO3, and DYT-TOR1A by collecting case reports from the literature and performing variant classification using pathogenicity criteria.


Assuntos
Distonia , Distúrbios Distônicos , Idoso , Anoctaminas , Proteínas Reguladoras de Apoptose/genética , Proteínas de Ligação a DNA , Distúrbios Distônicos/genética , Humanos , Pessoa de Meia-Idade , Chaperonas Moleculares/genética , Mutação
9.
J Neural Transm (Vienna) ; 128(4): 417-429, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33099685

RESUMO

The genetic combined dystonias are a clinically and genetically heterogeneous group of neurologic disorders defined by the overlap of dystonia and other movement disorders such as parkinsonism or myoclonus. The number of genes associated with combined dystonia syndromes has been increasing due to the wider recognition of clinical features and broader use of genetic testing. Nevertheless, these diseases are still rare and represent only a small subgroup among all dystonias. Dopa-responsive dystonia (DYT/PARK-GCH1), rapid-onset dystonia-parkinsonism (DYT/PARK-ATP1A3), X-linked dystonia-parkinsonism (XDP, DYT/PARK-TAF1), and young-onset dystonia-parkinsonism (DYT/PARK-PRKRA) are monogenic combined dystonias accompanied by parkinsonian features. Meanwhile, MYC/DYT-SGCE and MYC/DYT-KCTD17 are characterized by dystonia in combination with myoclonus. In the past, common molecular pathways between these syndromes were the center of interest. Although the encoded proteins rather affect diverse cellular functions, recent neurophysiological evidence suggests similarities in the underlying mechanism in a subset. This review summarizes recent developments in the combined dystonias, focusing on clinico-genetic features and neurophysiologic findings. Disease-modifying therapies remain unavailable to date; an overview of symptomatic therapies for these disorders is also presented.


Assuntos
Distonia , Distúrbios Distônicos , Doenças Genéticas Ligadas ao Cromossomo X , Transtornos dos Movimentos , Transtornos Parkinsonianos , Distonia/genética , Distúrbios Distônicos/genética , Humanos , Transtornos dos Movimentos/genética , Transtornos Parkinsonianos/genética
10.
Mov Disord ; 35(11): 1933-1938, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32949450

RESUMO

MDSGene is an online database on movement disorders that collates genetic and clinical knowledge using a standardized published literature abstraction strategy. This review is dedicated to X-linked dystonia-parkinsonism (XDP). We screened 233 citations and curated phenotypic and genotypic data for 414 cases. To reduce data missingness, we (1) contacted authors and engaged the research community to provide additional clinical and genetic information, and (2) revisited previously unpublished data from a cohort of XDP patients seen at our institution. Using these approaches, we expanded the cohort to 577 cases and increased information available for important clinical and genetic features such as age at onset, initial manifestation, predominant motor symptoms, functional impairments, and repeat size information. We established the use of mining unpublished data to expand the MDSGene workflow and present an up-to-date description of the phenomenology of XDP using an extensive collection of previously reported and unreported data. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Distúrbios Distônicos , Doenças Genéticas Ligadas ao Cromossomo X , Coleta de Dados , Distúrbios Distônicos/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Genótipo , Humanos
11.
Ann Neurol ; 86(4): 517-526, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31376168

RESUMO

OBJECTIVE: X-linked dystonia-parkinsonism (XDP) is a neurodegenerative disease with adult onset dystonia and subsequent parkinsonism. Postmortem and imaging studies revealed remarkable striatal pathology, with a predominant involvement of the striosomal compartment in the early phase. Here, we aimed to disentangle sequential neurodegeneration in the striatum of XDP patients, provide evidence for preferential loss of distinct striatal areas in the early phase, and investigate whether iron accumulation is present. METHODS: We used multimodal structural magnetic resonance imaging (voxel-based morphometry and relaxometry) in 18 male XDP patients carrying a TAF1 mutation and 19 age-matched male controls. RESULTS: Voxel-based relaxometry and morphometry revealed (1) a cluster in the anteromedial putamen showing high iron content and severe atrophy (-55%) and (2) a cluster with reduced relaxation rates as a marker for increased water levels and a lower degree of atrophy (-20%) in the dorsolateral putamen. Iron deposition correlated with the degree of atrophy (ρ = -0.585, p = 0.011) and disease duration (ρ = 0.632, p = 0.005) in the anteromedial putamen. In the dorsolateral putamen, sensorimotor putamen atrophy correlated with disease severity (ρ = -0.649, p = 0.004). INTERPRETATION: This multimodal approach identified a patchy pattern of atrophy within the putamen. Atrophy is advanced and associated with iron accumulation in rostral regions of the striatum, whereas neurodegeneration is moderate and still ongoing in dorsolateral areas. Given the short disease duration and predominant dystonic phenotype, these results are well in line with early and preferential degeneration of striosome-rich striatal areas in XDP. ANN NEUROL 2019;86:517-526.


Assuntos
Doenças dos Gânglios da Base/diagnóstico por imagem , Doenças dos Gânglios da Base/patologia , Distúrbios Distônicos/diagnóstico por imagem , Distúrbios Distônicos/patologia , Degeneração Neural/patologia , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/patologia , Adulto , Atrofia/patologia , Doenças dos Gânglios da Base/complicações , Doenças dos Gânglios da Base/metabolismo , Estudos de Casos e Controles , Distúrbios Distônicos/complicações , Humanos , Ferro/metabolismo , Imageamento por Ressonância Magnética , Masculino , Neuroimagem , Transtornos Parkinsonianos/complicações , Transtornos Parkinsonianos/metabolismo , Putamen/diagnóstico por imagem , Putamen/metabolismo , Putamen/patologia , Índice de Gravidade de Doença , Adulto Jovem
12.
Ann Neurol ; 85(6): 812-822, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30973967

RESUMO

OBJECTIVE: X-linked dystonia parkinsonism (XDP) is a neurodegenerative movement disorder caused by a single mutation: SINE-VNTR-Alu (SVA) retrotransposon insertion in TAF1. Recently, a (CCCTCT)n repeat within the SVA insertion has been reported as an age-at-onset (AAO) modifier in XDP. Here we investigate the role of this hexanucleotide repeat in modifying expressivity of XDP. METHODS: We genotyped the hexanucleotide repeat in 355 XDP patients and correlated the repeat number (RN) with AAO (n = 295), initial clinical manifestation (n = 294), site of dystonia onset (n = 238), disease severity (n = 28), and cognitive function (n = 15). Furthermore, we investigated i) repeat instability by segregation analysis and Southern blotting using postmortem brain samples from two affected individuals and ii) relative TAF1 expression in blood RNA from 31 XDP patients. RESULTS: RN showed significant inverse correlations with AAO and with TAF1 expression and a positive correlation with disease severity and cognitive dysfunction. Importantly, AAO (and not RN) was directly associated with whether dystonia or parkinsonism will manifest at onset. RN was lower in patients affected by mouth/tongue dystonia compared with blepharospasm. RN was unstable across germline transmissions with an overall tendency to increase in length and exhibited somatic mosaicism in brain. INTERPRETATION: The hexanucleotide repeat within the SVA insertion acts as a genetic modifier of disease expressivity in XDP. RN-dependent TAF1 repression and subsequent differences in TAF1 mRNA levels in patients may be potentiated in the brain through somatic variability leading to the neurological phenotype. ANN NEUROL 2019;85:812-822.


Assuntos
Expansão das Repetições de DNA/genética , Distúrbios Distônicos/diagnóstico , Distúrbios Distônicos/genética , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Doenças Genéticas Ligadas ao Cromossomo X/genética , Histona Acetiltransferases/genética , Sequências Repetitivas de Ácido Nucleico/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética , Adulto , Distúrbios Distônicos/metabolismo , Feminino , Expressão Gênica , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Histona Acetiltransferases/biossíntese , Humanos , Masculino , Fatores Associados à Proteína de Ligação a TATA/biossíntese , Fator de Transcrição TFIID/biossíntese , Adulto Jovem
13.
Parkinsonism Relat Disord ; 61: 170-178, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30352750

RESUMO

BACKGROUND: X-linked dystonia-parkinsonism (XDP) is characterized by the unique transition of dystonia to parkinsonism and striatal degeneration. Slowing of saccades on clinical examination has been taken as suggestive of a progressive supranuclear palsy (PSP) phenotype. OBJECTIVES: To elucidate whether eye movement abnormalities in XDP patients reflect striatonigral impairment or deficits in the brainstem saccade generator as present in PSP. METHODS: Eye movements of 18 male XDP patients from the Philippines and 16 ethnically and age-matched, healthy control participants were analyzed and the results related to morphometric frontostriatal changes. RESULTS: There was moderate saccade hypometria in XDP but velocity of visually guided saccades was normal. XDP patients showed an increased antisaccade error rate which correlated with the reduction of (i) the volume of the pallidum and putamen as well as (ii) the volume and cortical thickness in dorsolateral prefrontal cortex. Amplitude of memory-guided saccades was smaller and latency prolonged. Horizontal smooth pursuit eye movements were impaired. CONCLUSIONS: Oculomotor abnormalities in XDP resemble those of patients with the Parkinsonian type of multiple system atrophy and - to a lesser degree - Parkinson's disease, but are not compatible with PSP. They indicate striatal impairment and may represent preclinical signs of the parkinsonian stage of XDP. The increasing failure of response inhibition in the antisaccade task with increasing striatal atrophy may indicate an endophenotype for striatal degeneration. Dorsolateral prefrontal degeneration can be inferred from the failure in initiating antisaccades, prolonged latency of memory-guided saccades and the reduction of dorsolateral prefrontal volume and cortical thickness.


Assuntos
Corpo Estriado/patologia , Distúrbios Distônicos , Doenças Genéticas Ligadas ao Cromossomo X , Degeneração Neural/patologia , Transtornos da Motilidade Ocular , Córtex Pré-Frontal/patologia , Adulto , Atrofia/patologia , Distúrbios Distônicos/complicações , Distúrbios Distônicos/patologia , Distúrbios Distônicos/fisiopatologia , Endofenótipos , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos da Motilidade Ocular/etiologia , Transtornos da Motilidade Ocular/patologia , Transtornos da Motilidade Ocular/fisiopatologia
14.
JAMA Neurol ; 76(2): 211-216, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30508028

RESUMO

Importance: Anecdotal evidence suggests that deep brain stimulation (DBS) of the internal globus pallidus (GPi) is effective in ameliorating dystonia in X-linked dystonia parkinsonism (XDP), a disease that is usually refractive to medical therapy. Objective: To determine the efficacy of GPi-DBS in a cohort of patients with XDP in a prospective study and identify predictors of postoperative outcomes. Design, Setting, and Participants: This observational prospective cohort study enrolled patients in February 2013 and was completed in December 2014. The patients were followed up for up to 46 months. Patients from the Philippines were treated in a single center in Lübeck, Germany and followed up in the Philippines. Sixteen men with XDP (mean [SD] age, 40.9 [7.3] years; disease duration, 1-6 years) from the Philippines with predominant dystonia were selected. Exposures: All patients underwent bilateral GPi-DBS in Lübeck, Germany. Main Outcomes and Measures: Clinical assessment included the motor parts of the Burke-Fahn-Marsden scale (BFMDRS-M) and the Unified Parkinson's Disease Rating Scale (UPDRS-III). T1-based basal ganglia volumetry was performed and correlated with postoperative outcomes. Results: The study participants included 16 Filipino men (mean age, 40.9 years). Masked video ratings revealed significant improvements of dystonia severity 1 week (-55%; range, -94% to 59%; P < .01) and 6 months (-59%; range, -100% to 22%; P < .001) after surgery. The UDPRS-III score also improved, albeit to a lesser extent (-19%; range, -54% to 95%; and -27%; range, -70% to 124%; respectively). Unmasked long-term follow-up confirmed the continued efficacy of GPi-DBS up to 46 months after surgery. Important secondary end points improved, including activities of daily living, pain severity, weight, and quality of life. Caudate atrophy was a predictor of a less beneficial outcome (r = 0.817, P = .004). Conclusions and Relevance: Internal globus pallidus DBS had a positive association in XDP with predominant dystonia (the primary end point) and contributed to an improved quality of life (the secondary end point). The response to DBS occurred within 1 week. Given the inverse correlation of postoperative benefit and caudate atrophy, GPi-DBS should be considered early during the disease course. Close international collaboration, training, and funding from multiple sources enabled the sustainable follow-up of patients with XDP in the Philippines.


Assuntos
Estimulação Encefálica Profunda/métodos , Distúrbios Distônicos/terapia , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Globo Pálido , Adulto , Núcleo Caudado/patologia , Seguimentos , Alemanha , Humanos , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , Filipinas
15.
Brain ; 141(10): 2995-3008, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30169601

RESUMO

X-linked dystonia-parkinsonism is a neurodegenerative movement disorder characterized by adult-onset dystonia combined with parkinsonism over the disease course. Previous imaging and pathological findings indicate exclusive striatal atrophy with predominant pathology of the striosomal compartment in the dystonic phase of X-linked dystonia-parkinsonism. The striosome occupies 10-15% of the entire striatal volume and the density of striosomes follows a rostrocaudal gradient with the rostral striatum being considered striosome-rich. Recent quantitative MRI analyses provided evidence for an additional involvement of the white matter and the pallidum. In this study, we aimed to (i) disentangle the degree of atrophy in the different subdivisions of the striatum; (ii) investigate changes of cortical morphology; and (iii) elucidate the role of the cerebellum in X-linked dystonia-parkinsonism. T1-weighted MRI scans were acquired in 17 male X-linked dystonia-parkinsonism patients with predominant dystonia (40.1 ± 7.5 years) and 17 ethnicity-matched male healthy controls (35.2 ± 7.4 years). Voxel-based morphometry used a region of interest-based approach for the basal ganglia and primary motor cortex, whole brain analysis, and a separate analysis of the cerebellum. Cortical thickness and subcortical volume were measured. Volume loss in X-linked dystonia-parkinsonism affected all parts of the striatum (-29% voxel intensity) but was most pronounced in the associative subdivision (-41%; P < 0.001). The volume loss also involved the external and internal pallidum, albeit to a lesser extent than the striatum (-19% and -12%, P<0.001). Cortical thickness was reduced in the frontal (-4.3%) and temporal cortex (-6.1%). In addition, we found grey matter pathology in the associative part of the cerebellum and increased voxel intensities in the anterior sensorimotor part of the cerebellum and the dorsal ponto-mesencephalic brainstem. Taken together, our analysis of subcortical and cortical grey matter in the dystonic phase of X-linked dystonia-parkinsonism showed that (i) the striosome-enriched rostral striatum was most severely affected; and (ii) cortical thickness was only reduced in those regions that predominantly have anatomical connections to striosomes. Moreover, the cerebellum may be implicated in both disease-related and compensatory changes, highlighting the significance of the cerebellum in the pathophysiology of dystonia.


Assuntos
Gânglios da Base/patologia , Cerebelo/patologia , Distúrbios Distônicos/patologia , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Adulto , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
16.
Mov Disord ; 33(7): 1108-1118, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30153385

RESUMO

BACKGROUND: The most likely genetic cause of X-linked dystonia-parkinsonism, a neurodegenerative movement disorder endemic to the Philippines, is a 2672-bp-long retrotransposon insertion in intron 32 of the TAF1 gene. The objectives of this study were to investigate whether (1) TAF1 expression is altered in induced pluripotent stem cells and differentiated neuronal models and (2) excision of the retrotransposon insertion restores normal TAF1 expression. METHODS: Expression of TAF1 and its neuronal isoform were determined in induced pluripotent stem cells and in induced pluripotent stem cell-derived cortical neurons and spiny projection neurons using quantitative PCR. Genome editing-based excision of the retrotransposon insertion was performed on induced pluripotent stem cells from 3 X-linked dystonia-parkinsonism patients. Edited and unedited induced pluripotent stem cells from X-linked dystonia-parkinsonism patients and controls were differentiated into cortical neurons and spiny projection neurons, and TAF1 expression was compared across groups. RESULTS: TAF1 was reduced in patient-derived induced pluripotent stem cells (P < 0.05) and spiny projection neurons (P < 0.01). After genome editing, we observed higher TAF1 expression in edited compared with unedited induced pluripotent stem cells (P < 0.0001). In edited spiny projection neurons, TAF1 expression was also increased, but did not reach statistical significance. No expression differences were observed in cortical neurons. CONCLUSIONS: (1) TAF1 reduction in X-linked dystonia-parkinsonism is likely due to the retrotransposon insertion and is recapitulated in induced pluripotent stem cells and differentiated spiny projection neurons. (2) TAF1 reduction is a tractable molecular phenotype of X-linked dystonia-parkinsonism that can be driven by excision of the retrotransposon insertion. (3) Successful rescue of the molecular phenotype in an endogenous, genome-edited model serves as a proof of principle that may successfully be transferred to other inherited neurodegenerative diseases. © 2018 International Parkinson and Movement Disorder Society.


Assuntos
Distúrbios Distônicos/genética , Distúrbios Distônicos/metabolismo , Edição de Genes/métodos , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Histona Acetiltransferases/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/metabolismo , Adulto , Células Cultivadas , Córtex Cerebral/citologia , Feminino , Fator 3 de Diferenciação de Crescimento/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Proteína Homeobox Nanog/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , RNA Mensageiro/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Transfecção , Tubulina (Proteína)/metabolismo
17.
Mov Disord ; 33(5): 730-741, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29644727

RESUMO

This first comprehensive MDSGene review is devoted to the 3 autosomal recessive Parkinson's disease forms: PARK-Parkin, PARK-PINK1, and PARK-DJ1. It followed MDSGene's standardized data extraction protocol and screened a total of 3652 citations and is based on fully curated phenotypic and genotypic data on >1100 patients with recessively inherited PD because of 221 different disease-causing mutations in Parkin, PINK1, or DJ1. All these data are also available in an easily searchable online database (www.mdsgene.org), which also provides descriptive summary statistics on phenotypic and genetic data. Despite the high degree of missingness of phenotypic features and unsystematic reporting of genotype data in the original literature, the present review recapitulates many of the previously described findings including early onset (median age at onset of ∼30 years for carriers of at least 2 mutations in any of the 3 genes) of an overall clinically typical form of PD with excellent treatment response, dystonia and dyskinesia being relatively common and cognitive decline relatively uncommon. However, when comparing actual data with common expert knowledge in previously published reviews, we detected several discrepancies. We conclude that systematic reporting of phenotypes is a pressing need in light of increasingly available molecular genetic testing and the emergence of first gene-specific therapies entering clinical trials. © 2018 International Parkinson and Movement Disorder Society.


Assuntos
Estudos de Associação Genética , Doença de Parkinson/genética , Proteína Desglicase DJ-1/genética , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética , Animais , Humanos , Doença de Parkinson/fisiopatologia
18.
Neuroimage Clin ; 17: 835-846, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29527488

RESUMO

Preliminary evidence from postmortem studies of X-linked dystonia-parkinsonism (XDP) suggests tissue loss may occur first and/or most severely in the striatal striosome compartment, followed later by cell loss in the matrix compartment. However, little is known about how this relates to pathogenesis and pathophysiology. While MRI cannot visualize these striatal compartments directly in humans, differences in relative gradients of afferent cortical connectivity across compartments (weighted toward paralimbic versus sensorimotor cortex, respectively) can be used to infer potential selective loss in vivo. In the current study we evaluated relative connectivity of paralimbic versus sensorimotor cortex with the caudate and putamen in 17 individuals with XDP and 17 matched controls. Although caudate and putamen volumes were reduced in XDP, there were no significant reductions in either "matrix-weighted", or "striosome-weighted" connectivity. In fact, paralimbic connectivity with the putamen was elevated, rather than reduced, in XDP. This was driven most strongly by elevated putamen connectivity with the anterior insula. There was no relationship of these findings to disease duration or striatal volume, suggesting insula and/or paralimbic connectivity in XDP may develop abnormally and/or increase in the years before symptom onset.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Distúrbios Distônicos/patologia , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Imageamento por Ressonância Magnética , Vias Neurais/diagnóstico por imagem , Putamen/diagnóstico por imagem , Adulto , Mapeamento Encefálico , Estudos de Casos e Controles , Estudos de Coortes , Distúrbios Distônicos/diagnóstico por imagem , Feminino , Lateralidade Funcional , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença
19.
Cell ; 172(5): 897-909.e21, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29474918

RESUMO

X-linked Dystonia-Parkinsonism (XDP) is a Mendelian neurodegenerative disease that is endemic to the Philippines and is associated with a founder haplotype. We integrated multiple genome and transcriptome assembly technologies to narrow the causal mutation to the TAF1 locus, which included a SINE-VNTR-Alu (SVA) retrotransposition into intron 32 of the gene. Transcriptome analyses identified decreased expression of the canonical cTAF1 transcript among XDP probands, and de novo assembly across multiple pluripotent stem-cell-derived neuronal lineages discovered aberrant TAF1 transcription that involved alternative splicing and intron retention (IR) in proximity to the SVA that was anti-correlated with overall TAF1 expression. CRISPR/Cas9 excision of the SVA rescued this XDP-specific transcriptional signature and normalized TAF1 expression in probands. These data suggest an SVA-mediated aberrant transcriptional mechanism associated with XDP and may provide a roadmap for layered technologies and integrated assembly-based analyses for other unsolved Mendelian disorders.


Assuntos
Distúrbios Distônicos/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Genoma Humano , Transcriptoma/genética , Processamento Alternativo/genética , Elementos Alu/genética , Sequência de Bases , Sistemas CRISPR-Cas/genética , Estudos de Coortes , Família , Feminino , Loci Gênicos , Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Íntrons/genética , Masculino , Repetições Minissatélites/genética , Modelos Genéticos , Degeneração Neural/genética , Degeneração Neural/patologia , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Elementos Nucleotídeos Curtos e Dispersos , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo
20.
Handb Clin Neurol ; 147: 211-227, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29325612

RESUMO

An understanding of the genetic etiology of Parkinson disease (PD) has become imperative for the modern-day neurologist. Although genetic forms cause only a minority of PD, the disease mechanisms they elucidate advance the understanding of idiopathic cases. Moreover, recently identified susceptibility variants contribute to complex-etiology PD and broaden the contribution of genetics beyond familial and early-onset cases. Dominantly inherited monogenic forms mimic idiopathic PD and are caused by mutations or copy number variations of SNCA, LRRK2, and VPS35. On the other hand, early-onset forms are associated with PARKIN, PINK1, and DJ1 mutations, nominating mitochondrial dysfunction and oxidative stress as another important molecular pathway in the causation of the disease, in addition to alpha-synuclein accumulation. Common variants in GBA are consistently identified by association studies and may be considered to be a major risk gene for PD, with markedly reduced penetrance. Other genes have been proposed to be associated with PD; however, these only cause very rare forms, if at all. Current guidelines recommend testing for LRRK2 variants in familial PD or in specific populations (ancestry), and for the recessive genes in early-onset PD. However, gene panels have made testing for multiple forms of genetic PD a viable approach.


Assuntos
Predisposição Genética para Doença/genética , Variação Genética/genética , Doença de Parkinson/genética , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Proteína Desglicase DJ-1/genética , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética , Proteínas de Transporte Vesicular/genética , alfa-Sinucleína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA