Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 434: 115799, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34798142

RESUMO

Arsenic is a naturally occurring element present in food, soil and water and human exposure is associated with increased cancer risk. Arsenic inhibits DNA repair at low, non-cytotoxic concentrations and amplifies the mutagenic and carcinogenic impact of other DNA-damaging agents, such as ultraviolet radiation (UVR). Arsenic exposure leads to oxidation of zinc coordinating cysteine residues, zinc loss and decreased activity of the DNA repair protein poly(ADP)ribose polymerase (PARP)-1. Because arsenic stimulates NADPH oxidase (NOX) activity leading to generation of reactive oxygen species (ROS), the goal of this study was to investigate the role of NOX in arsenic-induced inhibition of PARP activity and retention of DNA damage. NOX involvement in the arsenic response was assessed in vitro and in vivo. Keratinocytes were treated with or without arsenite, solar-simulated UVR, NOX inhibitors and/or isoform specific NOX siRNA. Knockdown or inhibition of NOX decreased arsenite-induced ROS, PARP-1 oxidation and DNA damage retention, while restoring arsenite inhibition of PARP-1 activity. The NOX2 isoform was determined to be the major contributor to arsenite-induced ROS generation and DNA damage retention. In vivo DNA damage was measured by immunohistochemical staining and analysis of dorsal epidermis sections from C57BI/6 and p91phox knockout (NOX2-/-) mice. There was no significant difference in solar-simulated UVR DNA damage as detected by percent PH2AX positive cells within NOX2-/- mice versus control. In contrast, arsenite-dependent retention of UVR-induced DNA damage was markedly reduced. Altogether, the in vitro and in vivo findings indicate that NOX is involved in arsenic enhancement of UVR-induced DNA damage.


Assuntos
Arsênio/toxicidade , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , NADPH Oxidase 2/metabolismo , Raios Ultravioleta , Animais , Linhagem Celular , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Camundongos , Camundongos Knockout , NADPH Oxidase 1/genética , NADPH Oxidase 1/metabolismo , NADPH Oxidase 2/genética , Espécies Reativas de Oxigênio
2.
BMC Cancer ; 21(1): 40, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413202

RESUMO

BACKGROUND: Rho-family GTPases, including Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 (Cdc42), are important modulators of cancer-relevant cell functions and are viewed as promising therapeutic targets. Based on high-throughput screening and cheminformatics we identified the R-enantiomer of an FDA-approved drug (ketorolac) as an inhibitor of Rac1 and Cdc42. The corresponding S-enantiomer is a non-steroidal anti-inflammatory drug (NSAID) with selective activity against cyclooxygenases. We reported previously that R-ketorolac, but not the S-enantiomer, inhibited Rac1 and Cdc42-dependent downstream signaling, growth factor stimulated actin cytoskeleton rearrangements, cell adhesion, migration and invasion in ovarian cancer cell lines and patient-derived tumor cells. METHODS: In this study we treated mice with R-ketorolac and measured engraftment of tumor cells to the omentum, tumor burden, and target GTPase activity. In order to gain insights into the actions of R-ketorolac, we also performed global RNA-sequencing (RNA-seq) analysis on tumor samples. RESULTS: Treatment of mice with R-ketorolac decreased omental engraftment of ovarian tumor cells at 18 h post tumor cell injection and tumor burden after 2 weeks of tumor growth. R-ketorolac treatment inhibited tumor Rac1 and Cdc42 activity with little impact on mRNA or protein expression of these GTPase targets. RNA-seq analysis revealed that R-ketorolac decreased expression of genes in the HIF-1 signaling pathway. R-ketorolac treatment also reduced expression of additional genes associated with poor prognosis in ovarian cancer. CONCLUSION: These findings suggest that R-ketorolac may represent a novel therapeutic approach for ovarian cancer based on its pharmacologic activity as a Rac1 and Cdc42 inhibitor. R-ketorolac modulates relevant pathways and genes associated with disease progression and worse outcome.


Assuntos
Inibidores de Ciclo-Oxigenase/farmacologia , Cetorolaco/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Animais , Apoptose , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Nus , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Estereoisomerismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas rho de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA