Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Leuk Lymphoma ; 64(12): 1893-1904, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37552126

RESUMO

Cyclin-dependent kinases (CDK) regulate cell cycle and transcriptional activity. Pan-CDK inhibitors demonstrated early efficacy in lymphoid malignancies, but also have been associated with narrow therapeutic index. Among transcriptional CDKs, CDK7 and CDK9 emerged as promising targets. CDK9 serves as a component of P-TEFb elongation complex and thus is indispensable in mRNA transcription. Selective CDK9 inhibitors demonstrated pre-clinical efficacy in in vitro and in vivo models of B-cell non-Hodgkin lymphoma. CDK9 inhibition results in transcriptional pausing with rapid downmodulation of short-lived oncogenic proteins, e.g. Myc and Mcl-1, followed by cell apoptosis. Early phase clinical trials established safety of CDK9 inhibitors, with manageable neutropenia, infections and gastrointestinal toxicities. In this review, we summarize the rationale of targeting CDK9 in lymphoid malignancies, as well as pre-clinical and early clinical data with pan-CDK and selective CDK9 inhibitors.


Assuntos
Quinases Ciclina-Dependentes , Neoplasias , Humanos , Quinases Ciclina-Dependentes/genética , Fosforilação , Transcrição Gênica , Pontos de Checagem do Ciclo Celular
2.
Mol Cancer ; 22(1): 64, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36998071

RESUMO

Diffuse large B-cell lymphoma (DLBCL) exhibits significant genetic heterogeneity which contributes to drug resistance, necessitating development of novel therapeutic approaches. Pharmacological inhibitors of cyclin-dependent kinases (CDK) demonstrated pre-clinical activity in DLBCL, however many stalled in clinical development. Here we show that AZD4573, a selective inhibitor of CDK9, restricted growth of DLBCL cells. CDK9 inhibition (CDK9i) resulted in rapid changes in the transcriptome and proteome, with downmodulation of multiple oncoproteins (eg, MYC, Mcl-1, JunB, PIM3) and deregulation of phosphoinotiside-3 kinase (PI3K) and senescence pathways. Following initial transcriptional repression due to RNAPII pausing, we observed transcriptional recovery of several oncogenes, including MYC and PIM3. ATAC-Seq and ChIP-Seq experiments revealed that CDK9i induced epigenetic remodeling with bi-directional changes in chromatin accessibility, suppressed promoter activation and led to sustained reprograming of the super-enhancer landscape. A CRISPR library screen suggested that SE-associated genes in the Mediator complex, as well as AKT1, confer resistance to CDK9i. Consistent with this, sgRNA-mediated knockout of MED12 sensitized cells to CDK9i. Informed by our mechanistic findings, we combined AZD4573 with either PIM kinase or PI3K inhibitors. Both combinations decreased proliferation and induced apoptosis in DLBCL and primary lymphoma cells in vitro as well as resulted in delayed tumor progression and extended survival of mice xenografted with DLBCL in vivo. Thus, CDK9i induces reprogramming of the epigenetic landscape, and super-enhancer driven recovery of select oncogenes may contribute to resistance to CDK9i. PIM and PI3K represent potential targets to circumvent resistance to CDK9i in the heterogeneous landscape of DLBCL.


Assuntos
Quinase 9 Dependente de Ciclina , Epigênese Genética , Linfoma Difuso de Grandes Células B , Animais , Camundongos , Apoptose , Linhagem Celular Tumoral , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fatores de Transcrição/genética , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos
3.
Antioxidants (Basel) ; 11(12)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36552682

RESUMO

Epidemiological studies suggest cigarette smoking as a probable environmental factor for a variety of congenital anomalies, including low bone mass, increased fracture risk and poor skeletal health. Human and animal in vitro models have confirmed hypomineralization of differentiating cell lines with sidestream smoke being more harmful to developing cells than mainstream smoke. Furthermore, first reports are emerging to suggest a differential impact of conventional versus harm-reduction tobacco products on bone tissue as it develops in the embryo or in vitro. To gather first insight into the molecular mechanism of such differences, we assessed the effect of sidestream smoke solutions from Camel (conventional) and Camel Blue (harm-reduction) cigarettes using a human embryonic stem cell osteogenic differentiation model. Sidestream smoke from the conventional Camel cigarettes concentration-dependently inhibited in vitro calcification triggered by high levels of mitochondrially generated oxidative stress, loss of mitochondrial membrane potential, and reduced ATP production. Camel sidestream smoke also induced DNA damage and caspase 9-dependent apoptosis. Camel Blue-exposed cells, in contrast, invoked only intermediate levels of reactive oxygen species insufficient to activate caspase 3/7. Despite the absence of apoptotic gene activation, damage to the mitochondrial phenotype was still noted concomitant with activation of an anti-inflammatory gene signature and inhibited mineralization. Collectively, the presented findings in differentiating pluripotent stem cells imply that embryos may exhibit low bone mineral density if exposed to environmental smoke during development.

4.
Physiol Rep ; 10(19): e15466, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36207795

RESUMO

Pulmonary diseases alter lung mechanical properties, can cause loss of function, and necessitate use of mechanical ventilation, which can be detrimental. Investigations of lung tissue (local) scale mechanical properties are sparse compared to that of the whole organ (global) level, despite connections between regional strain injury and ventilation. We examine ex vivo mouse lung mechanics by investigating strain values, local compliance, tissue surface heterogeneity, and strain evolutionary behavior for various inflation rates and volumes. A custom electromechanical, pressure-volume ventilator is coupled with digital image correlation to measure regional lung strains and associate local to global mechanics by analyzing novel pressure-strain evolutionary measures. Mean strains at 5 breaths per minute (BPM) for applied volumes of 0.3, 0.5, and 0.7 ml are 5.0, 7.8, and 11.3%, respectively, and 4.7, 8.8, and 12.2% for 20 BPM. Similarly, maximum strains among all rate and volume combinations range 10.7%-22.4%. Strain values (mean, range, mode, and maximum) at peak inflation often exhibit significant volume dependencies. Additionally, select evolutionary behavior (e.g., local lung compliance quantification) and tissue heterogeneity show significant volume dependence. Rate dependencies are generally found to be insignificant; however, strain values and surface lobe heterogeneity tend to increase with increasing rates. By quantifying strain evolutionary behavior in relation to pressure-volume measures, we associate time-continuous local to global mouse lung mechanics for the first time and further examine the role of volume and rate dependency. The interplay of multiscale deformations evaluated in this work can offer insights for clinical applications, such as ventilator-induced lung injury.


Assuntos
Respiração Artificial , Mecânica Respiratória , Animais , Pulmão , Complacência Pulmonar , Medidas de Volume Pulmonar , Camundongos , Respiração Artificial/métodos , Volume de Ventilação Pulmonar
5.
Cancers (Basel) ; 14(8)2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35454807

RESUMO

Lung cancer is the leading cause of cancer-related deaths worldwide, with increased risk being associated with unresolved or chronic inflammation. Agricultural and livestock workers endure significant exposure to agricultural dusts on a routine basis; however, the chronic inflammatory and carcinogenic effects of these dust exposure is unclear. We have developed a chronic dust exposure model of lung carcinogenesis in which mice were intranasally challenged three times a week for 24 weeks, using an aqueous dust extract (HDE) made from dust collected in swine confinement facilities. We also treated mice with the omega-3-fatty acid lipid mediator, aspirin-triggered resolvin D1 (AT-RvD1) to provide a novel therapeutic strategy for mitigating the inflammatory and carcinogenic effects of HDE. Exposure to HDE resulted in significant immune cell influx into the lungs, enhanced lung tumorigenesis, severe tissue pathogenesis, and a pro-inflammatory and carcinogenic gene signature, relative to saline-exposed mice. AT-RvD1 treatment mitigated the dust-induced inflammatory response but did not protect against HDE + NNK-enhanced tumorigenesis. Our data suggest that chronic HDE exposure induces a significant inflammatory and pro-carcinogenic response, whereas treatment with AT-RvD1 dampens the inflammatory responses, providing a strong argument for the therapeutic use of AT-RvD1 to mitigate chronic inflammation.

6.
Nutrients ; 12(8)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759853

RESUMO

Agricultural workers are at risk for the development of acute and chronic lung diseases due to their exposure to organic agricultural dusts. A diet intervention using the omega-3 fatty acid docosahexaenoic acid (DHA) has been shown to be an effective therapeutic approach for alleviating a dust-induced inflammatory response. We thus hypothesized a high-DHA diet would alter the dust-induced inflammatory response through the increased production of specialized pro-resolving mediators (SPMs). Mice were pre-treated with a DHA-rich diet 4 weeks before being intranasally challenged with a single dose of an extract made from dust collected from a concentrated swine feeding operation (HDE). This omega-3-fatty-acid-rich diet led to reduced arachidonic acid levels in the blood, enhanced macrophage recruitment, and increased the production of the DHA-derived SPM Resolvin D1 (RvD1) in the lung following HDE exposure. An assessment of transcript-level changes in the immune response demonstrated significant differences in immune pathway activation and alterations of numerous macrophage-associated genes among HDE-challenged mice fed a high DHA diet. Our data indicate that consuming a DHA-rich diet leads to the enhanced production of SPMs during an acute inflammatory challenge to dust, supporting a role for dietary DHA supplementation as a potential therapeutic strategy for reducing dust-induced lung inflammation.


Assuntos
Dieta Hiperlipídica/métodos , Ácidos Docosa-Hexaenoicos/administração & dosagem , Poeira , Exposição por Inalação/efeitos adversos , Pneumonia/dietoterapia , Ração Animal/efeitos adversos , Animais , Ácido Araquidônico/sangue , Suplementos Nutricionais , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/biossíntese , Pulmão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/etiologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA