Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Discov Immunol ; 2(1): kyad001, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36855464

RESUMO

In animal models of inflammatory colitis, pathology can be ameliorated by several intestinal helminth parasites, including the mouse nematode Heligmosomoides polygyrus. To identify parasite products that may exert anti-inflammatory effects in vivo, we tested H. polygyrus excretory-secretory (HES) products, as well as a recombinantly expressed parasite protein, transforming growth factor mimic (TGM), that functionally mimics the mammalian immunomodulatory cytokine TGF-ß. HES and TGM showed a degree of protection in dextran sodium sulphate-induced colitis, with a reduction in inflammatory cytokines, but did not fully block the development of pathology. HES also showed little benefit in a similar acute trinitrobenzene sulphonic acid-induced model. However, in a T cell transfer-mediated model with recombination activation gene (RAG)-deficient mice, HES-reduced disease scores if administered throughout the first 2 or 4 weeks following transfer but was less effective if treatment was delayed until 14 days after T cell transfer. Recombinant TGM similarly dampened colitis in RAG-deficient recipients of effector T cells, and was effective even if introduced only once symptoms had begun to be manifest. These results are a promising indication that TGM may replicate, and even surpass, the modulatory properties of native parasite HES.

2.
PLoS Negl Trop Dis ; 16(9): e0010779, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36170238

RESUMO

Amphotericin B is increasingly used in treatment of leishmaniasis. Here, fourteen independent lines of Leishmania mexicana and one L. infantum line were selected for resistance to either amphotericin B or the related polyene antimicrobial, nystatin. Sterol profiling revealed that, in each resistant line, the predominant wild-type sterol, ergosta-5,7,24-trienol, was replaced by other sterol intermediates. Broadly, two different profiles emerged among the resistant lines. Whole genome sequencing then showed that these distinct profiles were due either to mutations in the sterol methyl transferase (C24SMT) gene locus or the sterol C5 desaturase (C5DS) gene. In three lines an additional deletion of the miltefosine transporter gene was found. Differences in sensitivity to amphotericin B were apparent, depending on whether cells were grown in HOMEM, supplemented with foetal bovine serum, or a serum free defined medium (DM). Metabolomic analysis after exposure to AmB showed that a large increase in glucose flux via the pentose phosphate pathway preceded cell death in cells sustained in HOMEM but not DM, indicating the oxidative stress was more significantly induced under HOMEM conditions. Several of the lines were tested for their ability to infect macrophages and replicate as amastigote forms, alongside their ability to establish infections in mice. While several AmB resistant lines showed reduced virulence, at least two lines displayed heightened virulence in mice whilst retaining their resistance phenotype, emphasising the risks of resistance emerging to this critical drug.


Assuntos
Antiprotozoários , Leishmania mexicana , Camundongos , Animais , Anfotericina B/farmacologia , Leishmania mexicana/metabolismo , Nistatina , Soroalbumina Bovina/metabolismo , Esteróis , Estresse Oxidativo , Polienos , Transferases/metabolismo , Glucose , Ácidos Graxos Dessaturases/metabolismo , Antiprotozoários/farmacologia
3.
Immunology ; 167(2): 197-211, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35758054

RESUMO

Type 2-high asthma is a chronic inflammatory disease of the airways which is increasingly prevalent in countries where helminth parasite infections are rare, and characterized by T helper 2 (Th2)-dependent accumulation of eosinophils in the lungs. Regulatory cytokines such as TGF-ß can restrain inflammatory reactions, dampen allergic Th2 responses, and control eosinophil activation. The murine helminth parasite Heligmosomoides polygyrus releases a TGF-ß mimic (Hp-TGM) that replicates the biological and functional properties of TGF-ß despite bearing no structural similarity to the mammalian protein. Here, we investigated if Hp-TGM could alleviate allergic airway inflammation in mice exposed to Alternaria alternata allergen, house dust mite (HDM) extract or alum-adjuvanted ovalbumin protein (OVA). Intranasal administration of Hp-TGM during Alternaria exposure sharply reduced airway and lung tissue eosinophilia along with bronchoalveolar lavage fluid IL-5 and lung IL-33 cytokine levels at 24 h. The protective effect of Hp-TGM on airway eosinophilia was also obtained in the longer T-cell mediated models of HDM or OVA sensitisation with significant inhibition of eotaxin-1, IL-4 and IL-13 responses depending on the model and time-point. Hp-TGM was also protective when administered parenterally either when given at the time of allergic sensitisation or during airway allergen challenge. This project has taken the first steps in identifying the role of Hp-TGM in allergic asthma and highlighted its ability to control lung inflammation and allergic pathology. Future research will investigate the mode of action of Hp-TGM against airway allergic eosinophilia, and further explore its potential to be developed as a biotherapeutic in allergic asthma.


Assuntos
Asma , Eosinofilia , Helmintos , Alérgenos/farmacologia , Animais , Asma/tratamento farmacológico , Asma/patologia , Líquido da Lavagem Broncoalveolar/química , Quimiocina CCL11 , Citocinas/metabolismo , Eosinofilia/tratamento farmacológico , Eosinofilia/patologia , Interleucina-13 , Interleucina-33 , Interleucina-4 , Interleucina-5 , Pulmão , Mamíferos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina , Fator de Crescimento Transformador beta
4.
Mol Microbiol ; 116(2): 564-588, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33932053

RESUMO

Trypanosoma congolense is a principal agent causing livestock trypanosomiasis in Africa, costing developing economies billions of dollars and undermining food security. Only the diamidine diminazene and the phenanthridine isometamidium are regularly used, and resistance is widespread but poorly understood. We induced stable diminazene resistance in T. congolense strain IL3000 in vitro. There was no cross-resistance with the phenanthridine drugs, melaminophenyl arsenicals, oxaborole trypanocides, or with diamidine trypanocides, except the close analogs DB829 and DB75. Fluorescence microscopy showed that accumulation of DB75 was inhibited by folate. Uptake of [3 H]-diminazene was slow with low affinity and partly but reciprocally inhibited by folate and by competing diamidines. Expression of T. congolense folate transporters in diminazene-resistant Trypanosoma brucei brucei significantly sensitized the cells to diminazene and DB829, but not to oxaborole AN7973. However, [3 H]-diminazene transport studies, whole-genome sequencing, and RNA-seq found no major changes in diminazene uptake, folate transporter sequence, or expression. Instead, all resistant clones displayed a moderate reduction in the mitochondrial membrane potential Ψm. We conclude that diminazene uptake in T. congolense proceed via multiple low affinity mechanisms including folate transporters; while resistance is associated with a reduction in Ψm it is unclear whether this is the primary cause of the resistance.


Assuntos
Diminazena/farmacologia , Potencial da Membrana Mitocondrial/fisiologia , Tripanossomicidas/farmacologia , Trypanosoma congolense/efeitos dos fármacos , Tripanossomíase Africana/veterinária , Tripanossomíase Bovina/tratamento farmacológico , Animais , Bovinos , Resistência a Medicamentos/fisiologia , Transportadores de Ácido Fólico/metabolismo , Fenantridinas/farmacologia , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia , Tripanossomíase Bovina/parasitologia
5.
PLoS Negl Trop Dis ; 14(7): e0008447, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32730343

RESUMO

Only a single drug against schistosomiasis is currently available and new drug development is urgently required but very few drug targets have been validated and characterised. However, regulatory systems including cyclic nucleotide metabolism are emerging as primary candidates for drug discovery. Here, we report the cloning of ten cyclic nucleotide phosphodiesterase (PDE) genes of S. mansoni, out of a total of 11 identified in its genome. We classify these PDEs by homology to human PDEs. Male worms displayed higher expression levels for all PDEs, in mature and juvenile worms, and schistosomula. Several functional complementation approaches were used to characterise these genes. We constructed a Trypanosoma brucei cell line in which expression of a cAMP-degrading PDE complements the deletion of TbrPDEB1/B2. Inhibitor screens of these cells expressing only either SmPDE4A, TbrPDEB1 or TbrPDEB2, identified highly potent inhibitors of the S. mansoni enzyme that elevated the cellular cAMP concentration. We further expressed most of the cloned SmPDEs in two pde1Δ/pde2Δ strains of Saccharomyces cerevisiae and some also in a specialised strain of Schizosacharomyces pombe. Five PDEs, SmPDE1, SmPDE4A, SmPDE8, SmPDE9A and SmPDE11 successfully complemented the S. cerevisiae strains, and SmPDE7var also complemented to a lesser degree, in liquid culture. SmPDE4A, SmPDE8 and SmPDE11 were further assessed in S. pombe for hydrolysis of cAMP and cGMP; SmPDE11 displayed considerable preferrence for cGMP over cAMP. These results and tools enable the pursuit of a rigorous drug discovery program based on inhibitors of S. mansoni PDEs.


Assuntos
Clonagem Molecular , Regulação Enzimológica da Expressão Gênica/fisiologia , Proteínas de Helminto/metabolismo , Diester Fosfórico Hidrolases/genética , Schistosoma mansoni/enzimologia , Schistosoma mansoni/genética , Animais , Linhagem Celular , Deleção de Genes , Perfilação da Expressão Gênica , Genoma Helmíntico , Proteínas de Helminto/genética , Masculino , Camundongos , Filogenia , Trypanosoma brucei brucei , Leveduras
6.
Sci Rep ; 9(1): 11364, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31388043

RESUMO

Extracts of 35 samples of European propolis were tested against wild type and resistant strains of the protozoal pathogens Trypanosoma brucei, Trypanosoma congolense and Leishmania mexicana. The extracts were also tested against Crithidia fasciculata a close relative of Crithidia mellificae, a parasite of bees. Crithidia, Trypanosoma and Leishmania are all members of the order Kinetoplastida. High levels of activity were obtained for all the samples with the levels of activity varying across the sample set. The highest levels of activity were found against L. mexicana. The propolis samples were profiled by using liquid chromatography with high resolution mass spectrometry (LC-MS) and principal components analysis (PCA) of the data obtained indicated there was a wide variation in the composition of the propolis samples. Orthogonal partial least squares (OPLS) associated a butyrate ester of pinobanksin with high activity against T. brucei whereas in the case of T. congolense high activity was associated with methyl ethers of chrysin and pinobanksin. In the case of C. fasciculata highest activity was associated with methyl ethers of galangin and pinobanksin. OPLS modelling of the activities against L. mexicana using the mass spectrometry produced a less successful model suggesting a wider range of active components.


Assuntos
Antiprotozoários/farmacologia , Crithidia fasciculata/efeitos dos fármacos , Própole/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma congolense/efeitos dos fármacos , Animais , Antiprotozoários/uso terapêutico , Cromatografia Líquida , Infecções por Euglenozoa/tratamento farmacológico , Flavanonas/análise , Flavanonas/farmacologia , Flavonoides/análise , Flavonoides/farmacologia , Espectrometria de Massas , Própole/química , Própole/uso terapêutico
7.
PLoS Negl Trop Dis ; 13(4): e0007262, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30943202

RESUMO

Antigenic variation is employed by many pathogens to evade the host immune response, and Trypanosoma brucei has evolved a complex system to achieve this phenotype, involving sequential use of variant surface glycoprotein (VSG) genes encoded from a large repertoire of ~2,000 genes. T. brucei express multiple, sometimes closely related, VSGs in a population at any one time, and the ability to resolve and analyse this diversity has been limited. We applied long read sequencing (PacBio) to VSG amplicons generated from blood extracted from batches of mice sacrificed at time points (days 3, 6, 10 and 12) post-infection with T. brucei TREU927. The data showed that long read sequencing is reliable for resolving variant differences between VSGs, and demonstrated that there is significant expressed diversity (449 VSGs detected across 20 mice) and across the timeframe of study there was a clear semi-reproducible pattern of expressed diversity (median of 27 VSGs per sample at day 3 post infection (p.i.), 82 VSGs at day 6 p.i., 187 VSGs at day 10 p.i. and 132 VSGs by day 12 p.i.). There was also consistent detection of one VSG dominating expression across replicates at days 3 and 6, and emergence of a second dominant VSG across replicates by day 12. The innovative application of ecological diversity analysis to VSG reads enabled characterisation of hierarchical VSG expression in the dataset, and resulted in a novel method for analysing such patterns of variation. Additionally, the long read approach allowed detection of mosaic VSG expression from very few reads-the earliest in infection that such events have been detected. Therefore, our results indicate that long read analysis is a reliable tool for resolving diverse gene expression profiles, and provides novel insights into the complexity and nature of VSG expression in trypanosomes, revealing significantly higher diversity than previously shown and the ability to identify mosaic gene formation early during the infection process.


Assuntos
Variação Antigênica , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/imunologia , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Animais , Expressão Gênica , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Parasita , Camundongos , Glicoproteínas Variantes de Superfície de Trypanosoma/imunologia
8.
PLoS Negl Trop Dis ; 13(2): e0007052, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30716073

RESUMO

Amphotericin B is an increasingly important tool in efforts to reduce the global disease burden posed by Leishmania parasites. With few other chemotherapeutic options available for the treatment of leishmaniasis, the potential for emergent resistance to this drug is a considerable threat. Here we characterised four novel amphotericin B-resistant Leishmania mexicana lines. All lines exhibited altered sterol biosynthesis, and hypersensitivity to pentamidine. Whole genome sequencing demonstrated resistance-associated mutation of the sterol biosynthesis gene sterol C5-desaturase in one line. However, in three out of four lines, RNA-seq revealed loss of expression of sterol C24-methyltransferase (SMT) responsible for drug resistance and altered sterol biosynthesis. Additional loss of the miltefosine transporter was associated with one of those lines. SMT is encoded by two tandem gene copies, which we found to have very different expression levels. In all cases, reduced overall expression was associated with loss of the 3' untranslated region of the dominant gene copy, resulting from structural variations at this locus. Local regions of sequence homology, between the gene copies themselves, and also due to the presence of SIDER1 retrotransposon elements that promote multi-gene amplification, correlate to these structural variations. Moreover, in at least one case loss of SMT expression was not associated with loss of virulence in primary macrophages or in vivo. Whilst such repeat sequence-mediated instability is known in Leishmania genomes, its presence associated with resistance to a major antileishmanial drug, with no evidence of associated fitness costs, is a significant concern.


Assuntos
Anfotericina B/farmacologia , Instabilidade Genômica , Leishmania mexicana/efeitos dos fármacos , Leishmania mexicana/genética , Metiltransferases/genética , Animais , Antiprotozoários/farmacologia , Resistência a Medicamentos , Regulação Enzimológica da Expressão Gênica , Humanos , Metiltransferases/metabolismo
9.
Eur J Med Chem ; 150: 385-402, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29544150

RESUMO

African trypanosomiasis is a neglected parasitic disease that is still of great public health relevance, and a severe impediment to agriculture in endemic areas. The pathogens possess certain unique metabolic features that can be exploited for the development of new drugs. Notably, they rely on an essential, mitochondrially-localized enzyme, Trypanosome Alternative Oxidase (TAO) for their energy metabolism, which is absent in the mammalian hosts and therefore an attractive target for the design of safe drugs. In this study, we cloned, expressed and purified the physiologically relevant form of TAO, which lacks the N-terminal 25 amino acid mitochondrial targeting sequence (ΔMTS-TAO). A new class of 32 cationic and non-cationic 4-hydroxybenzoate and 4-alkoxybenzaldehyde inhibitors was designed and synthesized, enabling the first structure-activity relationship studies on ΔMTS-TAO. Remarkably, we obtained compounds with enzyme inhibition values (IC50) as low as 2 nM, which were efficacious against wild type and multidrug-resistant strains of T. brucei and T. congolense. The inhibitors 13, 15, 16, 19, and 30, designed with a mitochondrion-targeting lipophilic cation tail, displayed trypanocidal potencies comparable to the reference drugs pentamidine and diminazene, and showed no cross-resistance with the critical diamidine and melaminophenyl arsenical classes of trypanocides. The cationic inhibitors 15, 16, 19, 20, and 30 were also much more selective (900 - 344,000) over human cells than the non-targeted neutral derivatives (selectivity >8-fold). A preliminary in vivo study showed that modest doses of 15 and 16 reduced parasitaemia of mice infected with T. b. rhodesiense (STIB900). These compounds represent a promising new class of potent and selective hits against African trypanosomes.


Assuntos
Benzaldeídos/farmacologia , Proteínas Mitocondriais/antagonistas & inibidores , Oxirredutases/antagonistas & inibidores , Parabenos/farmacologia , Proteínas de Plantas/antagonistas & inibidores , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma congolense/efeitos dos fármacos , Trypanosoma/efeitos dos fármacos , Benzaldeídos/síntese química , Benzaldeídos/química , Cátions/química , Cátions/farmacologia , Relação Dose-Resposta a Droga , Proteínas Mitocondriais/metabolismo , Estrutura Molecular , Oxirredutases/metabolismo , Parabenos/síntese química , Parabenos/química , Testes de Sensibilidade Parasitária , Proteínas de Plantas/metabolismo , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/química , Trypanosoma/enzimologia
10.
J Ethnopharmacol ; 202: 256-264, 2017 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-28336470

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Leaves from the plant species studied herein are traditionally used in northern Nigeria against various protozoan infections. However, none of these herbal preparations have been standardized, nor have their toxicity to mammalian cells been investigated. In search of improved and non-toxic active antiprotozoal principles that are not cross-resistant with current anti-parasitics, we here report the results of the in vitro screening of extracts from seven selected medicinal plant species (Centrosema pubescens, Moringa oleifera, Tridax procumbens, Polyalthia longifolia, Newbouldia laevis, Eucalyptus maculate, Jathropha tanjorensis), used traditionally to treat kinetoplastid infections in Nigeria, and the isolation of their bioactive principles. AIM OF THE STUDY: To investigate the efficacies of medicinal plant extracts, and of compounds isolated therefrom, against kinetoplastid parasites, assess cross-resistance to existing chemotherapy, and assay their toxicity against mammalian cells in vitro. MATERIAL AND METHODS: Plants were extracted with hexane, ethyl acetate and methanol. Active principles were isolated by bioassay-led fractionation, testing for trypanocidal activity, and identified using NMR and mass spectrometry. EC50 values for their activity against wild-type and multi-drug resistant Trypanosoma brucei were obtained using the viability indicator dye resazurin. RESULTS: Seven medicinal plants were evaluated for activity against selected kinetoplastid parasites. The result shows that crude extracts and isolated active compounds from Polyalthia longifolia and Eucalyptus maculata, in particular, display promising activity against drug-sensitive and multi-drug resistant Trypanosoma brucei. The EC50 value of a clerodane (16α-hydroxy-cleroda-3,13(14)-Z-dien-15,16-olide) isolated from Polyalthia longifolia was as low as 0.38µg/mL, while a triterpenoid (3ß,13ß-dihydroxy-urs-11-en-28-oic acid) isolated from Eucalyptus maculata displayed an EC50 of 1.58µg/mL. None of the isolated compounds displayed toxicity towards Human Embryonic Kidney cells at concentrations up to 400µg/mL. In addition, the isolated compounds were active against Leishmania mexicana, as well as against T. congolense. CONCLUSION: We have isolated a clerodane compound from Polyalthia longifolia that shows low toxicity, no cross-resistance with current treatments, and promising activity against both human-infective and veterinary Trypanosoma species.


Assuntos
Amidinas/farmacologia , Arsenicais/farmacologia , Bioensaio/métodos , Tripanossomicidas/farmacologia , Tripanossomicidas/toxicidade , Linhagem Celular , Diterpenos Clerodânicos/farmacologia , Diterpenos Clerodânicos/toxicidade , Resistência a Medicamentos , Células HEK293 , Humanos , Leishmania mexicana/efeitos dos fármacos , Medicinas Tradicionais Africanas , Nigéria , Folhas de Planta/química , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma congolense/efeitos dos fármacos
11.
J Med Chem ; 60(4): 1509-1522, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28112515

RESUMO

We investigated a chemical strategy to boost the trypanocidal activity of 2,4-dihydroxybenzoic acid (2,4-DHBA)- and salicylhydroxamic acid (SHAM)-based trypanocides with triphenylphosphonium and quinolinium lipophilic cations (LC). Three series of LC conjugates were synthesized that were active in the submicromolar (5a-d and 10d-f) to low nanomolar (6a-f) range against wild-type and multidrug resistant strains of African trypanosomes (Trypanosoma brucei brucei and T. congolense). This represented an improvement in trypanocidal potency of at least 200-fold, and up to >10 000-fold, compared with that of non-LC-coupled parent compounds 2,4-DHBA and SHAM. Selectivity over human cells was >500 and reached >23 000 for 6e. Mechanistic studies showed that 6e did not inhibit the cell cycle but affected parasite respiration in a dose-dependent manner. Inhibition of trypanosome alternative oxidase and the mitochondrial membrane potential was also studied for selected compounds. We conclude that effective mitochondrial targeting greatly potentiated the activity of these series of compounds.


Assuntos
Hidroxibenzoatos/farmacologia , Salicilamidas/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma congolense/efeitos dos fármacos , Linhagem Celular , Descoberta de Drogas , Humanos , Hidroxibenzoatos/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Salicilamidas/química , Tripanossomicidas/química , Trypanosoma brucei brucei/metabolismo , Trypanosoma congolense/metabolismo , Tripanossomíase Africana/tratamento farmacológico
12.
PLoS One ; 8(3): e58034, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23505454

RESUMO

BACKGROUND: African trypanosomes are capable of both pyrimidine biosynthesis and salvage of preformed pyrimidines from the host, but it is unknown whether either process is essential to the parasite. METHODOLOGY/PRINCIPAL FINDINGS: Pyrimidine requirements for growth were investigated using strictly pyrimidine-free media, with or without single added pyrimidine sources. Growth rates of wild-type bloodstream form Trypanosoma brucei brucei were unchanged in pyrimidine-free medium. The essentiality of the de novo pyrimidine biosynthesis pathway was studied by knocking out the PYR6-5 locus that produces a fusion product of orotate phosphoribosyltransferase (OPRT) and Orotidine Monophosphate Decarboxylase (OMPDCase). The pyrimidine auxotroph was dependent on a suitable extracellular pyrimidine source. Pyrimidine starvation was rapidly lethal and non-reversible, causing incomplete DNA content in new cells. The phenotype could be rescued by addition of uracil; supplementation with uridine, 2'deoxyuridine, and cytidine allowed a diminished growth rate and density. PYR6-5(-/-) trypanosomes were more sensitive to pyrimidine antimetabolites and displayed increased uracil transport rates and uridine phosphorylase activity. Pyrimidine auxotrophs were able to infect mice although the infection developed much more slowly than infection with the parental, prototrophic trypanosome line. CONCLUSIONS/SIGNIFICANCE: Pyrimidine salvage was not an essential function for bloodstream T. b. brucei. However, trypanosomes lacking de novo pyrimidine biosynthesis are completely dependent on an extracellular pyrimidine source, strongly preferring uracil, and display reduced infectivity. As T. brucei are able to salvage sufficient pyrimidines from the host environment, the pyrimidine biosynthesis pathway is not a viable drug target, although any interruption of pyrimidine supply was lethal.


Assuntos
Pirimidinas/biossíntese , Trypanosoma brucei brucei/metabolismo , Doenças dos Animais , Animais , Transporte Biológico , Feminino , Técnicas de Inativação de Genes , Camundongos , Orotato Fosforribosiltransferase/genética , Orotato Fosforribosiltransferase/metabolismo , Inanição , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crescimento & desenvolvimento , Tripanossomíase Africana/veterinária , Uracila/metabolismo , Uridina Fosforilase/genética , Uridina Fosforilase/metabolismo
13.
PLoS One ; 7(3): e34416, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22470569

RESUMO

BACKGROUND: Guillain-Barré syndrome (GBS) is a post-infectious polyradiculoneuropathy, frequently associated with antecedent Campylobacter jejuni (C. jejuni) infection. The presence of sialic acid on C. jejuni lipo-oligosaccharide (LOS) is considered a risk factor for development of GBS as it crucially determines the structural homology between LOS and gangliosides, explaining the induction of cross-reactive neurotoxic antibodies. Sialylated C. jejuni are recognised by TLR4 and sialoadhesin; however, the functional implications of these interactions in vivo are unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study we investigated the effects of bacterial sialylation on phagocytosis and cytokine secretion by mouse myeloid cells in vitro and in vivo. Using fluorescently labelled GM1a/GD1a ganglioside-mimicking C. jejuni strains and corresponding (Cst-II-mutant) control strains lacking sialic acid, we show that sialylated C. jejuni was more efficiently phagocytosed in vitro by BM-MΦ, but not by BM-DC. In addition, LOS sialylation increased the production of IL-10, IL-6 and IFN-ß by both BM-MΦ and BM-DC. Subsequent in vivo experiments revealed that sialylation augmented the deposition of fluorescent bacteria in splenic DC, but not macrophages. In addition, sialylation significantly amplified the production of type I interferons, which was independent of pDC. CONCLUSIONS/SIGNIFICANCE: These results identify novel immune stimulatory effects of C. jejuni sialylation, which may be important in inducing cross-reactive humoral responses that cause GBS.


Assuntos
Infecções por Campylobacter/patologia , Campylobacter jejuni/metabolismo , Citocinas/metabolismo , Lipopolissacarídeos/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Fagocitose , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Gangliosídeos/metabolismo , Síndrome de Guillain-Barré/fisiopatologia , Interferon beta/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Baço/imunologia
14.
Eur J Immunol ; 38(5): 1238-46, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18398931

RESUMO

We demonstrate that uptake of oligomeric cognate antigen (OVA-hen egg lysozyme, OVA-HEL) alone or incorporated in immune-stimulating complexes (ISCOMS) facilitates presentation and simultaneous cross-presentation of OVA by HEL-specific B cells in vitro. HEL-specific B cells stimulated CD8(+) T cell responses in vitro to the same extent as bone marrow-derived dendritic cells. Cross-presentation by specific B cells required endosomal acidification, proteasomal processing and classical MHC class I/peptide transport. Specific B cells also acquired both antigens rapidly in vivo and presented them to CD4(+) T cells. However, only HEL-specific B cells from OVA-HEL ISCOMS-immunised mice could cross-present OVA to naive OVA-specific CD8(+) T cells. Antigen-specific B cells were also activated selectively by OVA-HEL ISCOMS in vitro and importantly, the presence of HEL-specific B cells promoted the persistence of clonal expansion of OVA-specific CD8(+) T cells after in vivo immunisation with OVA-HEL ISCOMS. These results demonstrate preferential MHC class I and class II processing of cognate antigen incorporated in ISCOMS by specific B cells in vitro and in vivo, highlighting the ability of ISCOMS to target B cells and offering novel insights into the role of B cells in cross-presentation to CD8(+) T cells.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos/imunologia , Linfócitos B/imunologia , Epitopos de Linfócito B/imunologia , ISCOMs , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacologia , Transferência Adotiva , Animais , Apresentação de Antígeno/efeitos dos fármacos , Antígenos/metabolismo , Linfócitos B/metabolismo , Brefeldina A/farmacologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/transplante , Proliferação de Células , Cloroquina/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Cinética , Linfonodos/citologia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Mutantes , Camundongos Transgênicos , Muramidase/administração & dosagem , Muramidase/química , Muramidase/imunologia , Ovalbumina/administração & dosagem , Ovalbumina/química , Ovalbumina/imunologia , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/genética , Vacinação
15.
Vaccine ; 24(24): 5201-10, 2006 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-16650917

RESUMO

There is increasing concern over the efficacy of existing vaccines for diphtheria and there is interest in the development of a mucosally active formulation which might improve local protection. Lipophilic immune stimulating complexes (ISCOMS) containing Quil A are active by both parenteral and mucosal routes and here we have established methods for incorporating palmitified diphtheria toxoid (DT) into ISCOMS. The resulting formulation was immunogenic by the subcutaneous, oral and intranasal routes, with very low doses of DT inducing systemic humoral immune responses, as well as cell mediated immunity including both gammaIFN and IL5 production. Intranasal immunisation with DT in ISCOMS also stimulated significant local antibody production in tracheal washes, as well as cellular immunity in draining lymphoid tissues and serum neutralising antibodies. Finally, subcutaneous immunisation of guinea pigs with DT in ISCOMS primed protective immunity against challenge with diphtheria holotoxin more efficiently than the equivalent doses of DT in the conventional alum vaccine. ISCOMS based vaccines may provide a novel strategy for mucosal and systemic immunisation against diphtheria.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Toxoide Diftérico/administração & dosagem , ISCOMs/administração & dosagem , Administração Intranasal , Administração Oral , Animais , Anticorpos Antibacterianos/sangue , Feminino , Cobaias , Imunidade nas Mucosas , Imunização , Imunoglobulina G/sangue , Injeções Subcutâneas , Camundongos , Camundongos Endogâmicos BALB C
16.
J Immunol ; 176(6): 3697-706, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16517738

RESUMO

The cholera toxin A1 (CTA1)-DD/QuilA-containing, immune-stimulating complex (ISCOM) vector is a rationally designed mucosal adjuvant that greatly potentiates humoral and cellular immune responses. It was developed to incorporate the distinctive properties of either adjuvant alone in a combination that exerted additive enhancing effects on mucosal immune responses. In this study we demonstrate that CTA1-DD and an unrelated Ag can be incorporated together into the ISCOM, resulting in greatly augmented immunogenicity of the Ag. To demonstrate its relevance for protection against infectious diseases, we tested the vector incorporating PR8 Ag from the influenza virus. After intranasal immunization we found that the immunogenicity of the PR8 proteins were significantly augmented by a mechanism that was enzyme dependent, because the presence of the enzymatically inactive CTA1R7K-DD mutant largely failed to enhance the response over that seen with ISCOMs alone. The combined vector was a highly effective enhancer of a broad range of immune responses, including specific serum Abs and balanced Th1 and Th2 CD4(+) T cell priming as well as a strong mucosal IgA response. Unlike unmodified ISCOMs, Ag incorporated into the combined vector could be presented by B cells in vitro and in vivo as well as by dendritic cells; it also accumulated in B cell follicles of draining lymph nodes when given s.c. and stimulated much enhanced germinal center reactions. Strikingly, the enhanced adjuvant activity of the combined vector was absent in B cell-deficient mice, supporting the idea that B cells are important for the adjuvant effects of the combined CTA1-DD/ISCOM vector.


Assuntos
Adjuvantes Imunológicos , Antígenos/imunologia , Linfócitos B/imunologia , Toxina da Cólera/imunologia , ISCOMs/imunologia , Imunidade nas Mucosas/imunologia , Proteínas Recombinantes de Fusão/imunologia , Animais , Anticorpos/imunologia , Anticorpos/metabolismo , Toxina da Cólera/metabolismo , ISCOMs/metabolismo , Linfonodos/metabolismo , Camundongos , Proteínas Recombinantes de Fusão/metabolismo , Células Th1/imunologia , Células Th2/imunologia
17.
Novartis Found Symp ; 252: 291-302; discussion 302-5, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14609226

RESUMO

The intestinal immune system discriminates between invasive pathogens and antigens that are harmless, such as food proteins and commensal bacteria. The latter groups of antigens normally induce tolerance and a breakdown in this homeostatic process can lead to diseases such as coeliac disease or Crohn's disease. The nature ofthe intestinal immune response depends on how antigen is presented to CD4+ T cells by dendritic cells (DCs). Both oral tolerance and priming are influenced by the numbers and activation status of DCs in the gut and its draining lymphoid tissues, and our current work indicates that dietary proteins are taken up preferentially by DCs in the lamina propria of the small intestine. These then migrate to interact with antigen-specific CD4+ T cells in the mesenteric lymph node. In vivo and in vitro studies using purified lamina propria DCs suggest these may play a unique role in the regulation of intestinal immune responses. We propose that local DCs are the gatekeepers of the mucosal immune system, inducing tolerance under physiological conditions, but being sufficiently responsive to inflammatory stimuli to allow T cell priming and protective immunity when necessary. In addition, we will discuss evidence that adjuvant vectors such as ISCOMS may be effective mucosal vaccines due to an ability to activate intestinal DCs.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Tolerância Imunológica , Imunidade nas Mucosas/imunologia , Animais , Homeostase , Humanos , Imunofenotipagem , Camundongos
18.
Immunology ; 110(1): 95-104, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12941146

RESUMO

Immune stimulating complexes (ISCOMs) containing the saponin adjuvant Quil A are vaccine adjuvants that promote a wide range of immune responses in vivo, including delayed-type hypersensitivity (DTH) and the secretion of both T helper 1 (Th1) and Th2 cytokines. However, the antigen-presenting cell (APC) responsible for the induction of these responses has not been characterized. Here we have investigated the role of dendritic cells (DC), macrophages (Mphi) and B cells in the priming of antigen-specific CD4+ T cells in vitro by ISCOMs containing ovalbumin (OVA). OVA ISCOMs pulsed bone marrow (BM)-derived DC but not BM Mphi, nor naïve B cells prime resting antigen-specific CD4+ T cells, and this response is greatly enhanced if DC are activated with lipopolysaccharide (LPS). Of the APC found in the spleen, only DC had the capacity to prime resting antigen specific CD4+ T cells following exposure to OVA ISCOMs in vitro, while Mphi and B cells were ineffective. DC, but not B cells purified from the draining lymph nodes of mice immunized with OVA ISCOMs also primed resting antigen-specific CD4+ T cells in vitro, suggesting that DC are also critical in vivo. Using DC and T cells from interleukin (IL)-12 p40-/- mice, we also identified a crucial role for IL-12 in the priming of optimal CD4+ T cell responses by OVA ISCOMs. We suggest that DC are the principal APC responsible for the priming of CD4+ T cells by ISCOMs in vivo and that directed targeting of these vectors to DC may enhance their efficancy as vaccine adjuvants.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , ISCOMs/imunologia , Interleucina-12/imunologia , Adjuvantes Imunológicos , Animais , Apresentação de Antígeno/imunologia , Linfócitos B/imunologia , Células Cultivadas , Células Dendríticas/imunologia , Relação Dose-Resposta Imunológica , Feminino , Genes MHC da Classe II , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/imunologia
19.
Immunology ; 109(3): 374-83, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12807483

RESUMO

Immune stimulating complexes (ISCOMS) containing the saponin adjuvant Quil A are vaccine adjuvants that induce a wide range of immune responses in vivo, including strong class I major histocompatibility complex (MHC)-restricted cytotoxic T-lymphocyte activity. However, the antigen-presenting cell responsible for the induction of these responses has not been characterized. Here we have investigated the role of dendritic cells (DC) in the priming of antigen-specific CD8+ T cells in vitro by ISCOMS containing ovalbumin. Resting bone marrow DC pulsed with ovalbumin ISCOMS efficiently prime resting CD8+ T cells through a mechanism that is transporter associated with antigen processing (TAP) dependent, but independent of CD40 ligation and CD4+ T-cell help. Lipopolysaccharide-induced maturation of DC markedly enhances their ability to prime CD8+ T cells through a mechanism which is also independent of CD4+ T-cell help, but is dependent on CD40 ligation. Furthermore, DC maturation revealed a TAP-independent mechanism of CD8+ T-cell priming. Our results also show that class I MHC-restricted presentation of ovalbumin in ISCOMS by DC is sensitive to chloroquine and brefeldin A but insensitive to lactacystin. We suggest that DC may be the principal antigen-presenting cells responsible for the priming of CD8+ T cells by ISCOMS in vivo and that targeting these vectors to activated DC may enhance their presentation via a novel pathway of class I antigen processing.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , ISCOMs/imunologia , Animais , Apresentação de Antígeno/efeitos dos fármacos , Apresentação de Antígeno/imunologia , Brefeldina A/farmacologia , Linfócitos T CD4-Positivos/imunologia , Antígenos CD40/imunologia , Diferenciação Celular/imunologia , Células Cultivadas , Cloroquina/farmacologia , Relação Dose-Resposta Imunológica , Feminino , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia
20.
Int Immunol ; 15(6): 711-20, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12750355

RESUMO

Immune-stimulating complexes (ISCOMS) are adjuvant vectors which are unusual in being able to prime both CD4(+) and CD8(+) T cells by parenteral and mucosal routes. However, their mode of action is unclear and to define better the cellular interactions involved we have studied the ability of ISCOMS containing ovalbumin (OVA) to prime TCR transgenic CD4(+) or CD8(+) T cells in vivo. Immunization with OVA ISCOMS caused activation and clonal expansion of CD4(+) and CD8(+) T cells in the T cell areas of the draining lymph nodes, followed by the migration of both CD4(+) and CD8(+) T cells into the B cell follicle. The T cells were primed to proliferate and secrete IFN-gamma after re-stimulation in vitro with the appropriate OVA peptide and CD8(+) T cell priming occurred in the absence of CD4(+) T cells. Increasing the number of dendritic cells (DC) in vivo with flt3 ligand augmented the expansion and activation of the OVA-specific T cells, particularly CD8(+) T cells. These studies indicate DC play a central role in the priming of both CD4(+) and CD8(+) T cells in vivo, and suggest that an ability to target DC may allow ISCOMS to be powerful vaccine vectors for stimulating protective immunity.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , ISCOMs/farmacologia , Ativação Linfocitária/imunologia , Animais , Complexo Antígeno-Anticorpo/imunologia , Complexo Antígeno-Anticorpo/farmacologia , Feminino , ISCOMs/imunologia , Imunização , Camundongos , Ovalbumina/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA