Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202400834, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716700

RESUMO

Ruthenium(II) polypyridyl complexes continue to raise increasing interest for the encouraging results in several biomedical areas. Considering their vast chemical-physical repertoire, in particular the possibility to switch from the sensitization of reactive oxygen species (ROS) to ROS-scavenging abilities by tuning the nature of their ligands, it is therefore surprising that their potential as antioxidants has not been largely investigated so far. Herein, we explored the antioxidant behaviour of the novel ruthenium compound [Ru(dbpy)(2,3-DAN)Cl]PF6 (Ru1), featuring a benzoxazole derivative (dpby = 2,6-bis(4-methyl-2-ossazolyl)pyridine) and the non-innocent 2,3-diamminonaftalene (2,3 DAN) ligand, along with the reference tpy-containing analogue [Ru(tpy)(2,3-DAN)Cl]PF6 (Ru2) (tpy = 2,2':6',2''-terpyridine). Following the synthesis and the electrochemical characterization, chemical antioxidant assays highlighted the beneficial role of dpby for the ROS-scavenging properties of Ru1. These data have been corroborated by the highest protective effect of Ru1 against the oxidative stress induced in SH-SY5Y human neuroblastoma, which exerts pro-survival and anti-inflammatory actions. The results herein reported highlight the potential of Ru1 as pharmacological tool in neurodegenerative diseases and specially prove that the antioxidant properties of such compounds are likely the result of a non-trivial synergetic action involving the bioactive ligands in their chemical architectures.

2.
Maturitas ; 185: 107996, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38657487

RESUMO

OBJECTIVES: To explore the imaging features and the molecular characterization of adenomyosis after menopause. STUDY DESIGN: An observational cross-sectional study was performed in a group of postmenopausal patients undergoing a transvaginal ultrasound (TVUS) (n = 468). Among those presenting the US criteria for adenomyosis, also confirmed by magnetic resonance imaging (MRI), previous menstrual symptoms, gynecological and obstetric history were reviewed. In a subgroup undergoing hysterectomy, uterine specimens were analyzed by histology and expression of genes implicated in the epithelial-mesenchymal transition, inflammation and fibrosis, including the sphingosine-1-phosphate (S1P) pathway, was evaluated and compared to matched non-menopausal adenomyosis specimens. MAIN OUTCOME MEASURES: Direct and indirect US features of adenomyosis according to Morphological Uterus Sonographic Assessment at TVUS. Molecular characterization of postmenopausal versus pre-menopausal adenomyosis samples. RESULTS: According to TVUS and MRI, adenomyosis was identified in 49 patients (10.4 %). On US, diffuse adenomyosis was the most common phenotype, whereas internal adenomyosis with diffuse pattern and asymmetric type was the most prevalent on MRI. Molecular analysis showed that adenomyosis lesions express markers of epithelial-mesenchymal transition, inflammation and fibrosis also in postmenopausal women. By comparing the results with those from pre-menopausal samples, the expression of α smooth muscle actin (αSMA), a marker of fibrosis, was significantly greater after menopause, and altered S1P catabolism and signaling were observed. CONCLUSIONS: Adenomyosis may be identified in postmenopausal women by imaging, either TVUS or MRI, and fibrosis is one of the key features on molecular analysis.


Assuntos
Adenomiose , Transição Epitelial-Mesenquimal , Imageamento por Ressonância Magnética , Pós-Menopausa , Ultrassonografia , Humanos , Feminino , Adenomiose/diagnóstico por imagem , Adenomiose/genética , Estudos Transversais , Pessoa de Meia-Idade , Ultrassonografia/métodos , Útero/diagnóstico por imagem , Útero/patologia , Fibrose , Actinas/metabolismo , Actinas/genética , Lisofosfolipídeos/metabolismo , Adulto , Pré-Menopausa , Esfingosina/análogos & derivados
3.
FEBS J ; 291(8): 1744-1758, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38287231

RESUMO

Endometriosis is a chronic gynecological syndrome characterized by endometrial cell invasion of the extra-uterine milieu, pelvic pain and infertility. Treatment relies on either symptomatic drugs or hormonal therapies, even though the mechanism involved in the onset of endometriosis is yet to be elucidated. The signaling of sphingolipid sphingosine 1-phosphate (S1P) is profoundly dysregulated in endometriosis. Indeed, sphingosine kinase (SK)1, one of the two isoenzymes responsible for S1P biosynthesis, and S1P1, S1P3 and S1P5, three of its five specific receptors, are more highly expressed in endometriotic lesions compared to healthy endometrium. Recently, missense coding variants of the gene encoding the receptor 1 for neuropeptide S (NPS) have been robustly associated with endometriosis in humans. This study aimed to characterize the biological effect of NPS in endometriotic epithelial cells and the possible involvement of the S1P signaling axis in its action. NPS was found to potently induce cell invasion and actin cytoskeletal remodeling. Of note, the NPS-induced invasive phenotype was dependent on SK1 and SK2 as well as on S1P1 and S1P3, given that the biological action of the neuropeptide was fully prevented when one of the two biosynthetic enzymes or one of the two selective receptors was inhibited or silenced. Furthermore, the RhoA/Rho kinase pathway, downstream to S1P receptor signaling, was found to be critically implicated in invasion and cytoskeletal remodeling elicited by NPS. These findings provide new information to the understanding of the molecular mechanisms implicated in endometriosis pathogenesis, establishing the rationale for non-hormonal therapeutic targets for its treatment.


Assuntos
Endometriose , Receptores de Lisoesfingolipídeo , Esfingosina , Feminino , Humanos , Endometriose/genética , Lisofosfolipídeos/metabolismo , Fenótipo , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/metabolismo , Esfingosina/análogos & derivados
4.
Fertil Steril ; 121(4): 631-641, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38072366

RESUMO

OBJECTIVE: To study the molecular mechanisms responsible for fibrosis in endometriosis by investigating whether the protein expression levels of sphingosine-1-phosphate receptor 3 (S1PR3), one of the five specific receptors of the bioactive sphingolipid sphingosine-1-phosphate (S1P), correlate with fibrosis extent in endometriotic lesions and which are the cellular mechanisms involved in this process. DESIGN: Case-control laboratory study and cultured endometriotic cells. SETTING: University research institute and university hospital. PATIENT(S): A total of 33 women, with and without endometriosis, were included in the study. INTERVENTIONS(S): Endometriotic lesions were obtained from women with endometriosis (ovarian endometrioma, n = 8; deep infiltrating endometriosis, n = 15; [urological n = 5, gastrointestinal n = 6, and posterior n = 4]) and control endometrium from healthy women, n = 10, by means of laparoscopic and hysteroscopic surgery. The expression of S1PR3 was evaluated using immunohistochemistry and the extent of fibrosis was assessed using Masson's trichrome staining. Human-cultured epithelial endometriotic 12Z cells were used to evaluate the mechanisms involved in the profibrotic effect of S1PR3 activation. MAIN OUTCOME MEASURE(S): The expression of S1PR3 in endometriotic lesions is positively correlated with endometriosis-associated fibrosis. In addition, S1P induced epithelial-mesenchymal transition (EMT) and fibrosis in epithelial endometriotic cells. Using RNA interference and pharmacological approaches, the profibrotic effect of S1P was shown to rely on S1PR3, thus unveiling the molecular mechanism implicated in the profibrotic action of the bioactive sphingolipid. RESULT(S): The protein expression levels of S1PR3 were significantly augmented in the glandular sections of endometrioma and deep infiltrating endometriosis of different localizations with respect to the control endometrium and positively correlated with the extent of fibrosis. Sphingosine-1-phosphate was shown to have a crucial role in the onset of fibrosis in epithelial endometriotic cells, stimulating the expression of EMT and fibrotic markers. Genetic approaches have highlighted that S1PR3 mediates the fibrotic effect of S1P. Downstream of S1PR3, ezrin and extracellular-signal-regulated kinases 1 and 2 signaling were found to be critically implicated in the EMT and fibrosis elicited by S1P. CONCLUSION(S): Sphingosine-1-phosphate receptor 3 may represent a possible innovative pharmacological target for endometriosis.


Assuntos
Endometriose , Lisofosfolipídeos , Esfingosina/análogos & derivados , Humanos , Feminino , Receptores de Esfingosina-1-Fosfato , Endometriose/complicações , Endometriose/genética , Endometriose/metabolismo , Fibrose , Esfingolipídeos
5.
Dalton Trans ; 52(39): 14110-14122, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37747105

RESUMO

Tyrosine kinases (TKs) are emerging as important targets in cancer therapy and some of their inhibitors, TKIs (e.g. imatinib and nilotinib), are FDA-approved drugs that are used as selective anti-cancer therapeutics against cell lines that overexpress TKs. Many examples of metal-based complexes functionalised with TKIs are reported in the literature but very few have been functionalised with platinum. Here we report the design, a detailed computational analysis/simulation, the complete chemical characterisation and the preliminary biological evaluation of two novel Pt(IV) anticancer pro-drugs based on cisplatin tethered with a derivative of either imatinib or nilotinib in the axial position. Pt(IV) complexes are a strategic scaffold in combination therapy due to their axial ligands that can be functionalised to form dual action drugs. The activation by reduction releases the Pt(II) core and the axial ligands upon cellular internalisation. The antiproliferative activity and the TK inhibition properties of the novel adducts are analysed with a theoretical approach and confirmed in vitro with preliminary biological assays.


Assuntos
Antineoplásicos , Complexos de Coordenação , Pró-Fármacos , Cisplatino/farmacologia , Cisplatino/química , Mesilato de Imatinib/farmacologia , Pró-Fármacos/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Pirimidinas/farmacologia , Complexos de Coordenação/farmacologia , Linhagem Celular Tumoral
6.
Life (Basel) ; 13(9)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37763216

RESUMO

Adipokines are peptide hormones produced by the adipose tissue involved in several biological functions. Among adipokines, adiponectin (ADPN) has antidiabetic and anti-inflammatory properties. It can also modulate food intake at central and peripheral levels, acting on hypothalamus and facilitating gastric relaxation. ADPN exerts its action interacting with two distinct membrane receptors and triggering some well-defined signaling cascades. The ceramidase activity of ADPN receptor has been reported in many tissues: it converts ceramide into sphingosine. In turn, sphingosine kinase (SK) phosphorylates it into sphingosine-1 phosphate (S1P), a crucial mediator of many cellular processes including contractility. Using a multidisciplinary approach that combined biochemical, electrophysiological and morphological investigations, we explored for the first time the possible role of S1P metabolism in mediating ADPN effects on the murine gastric fundus muscle layer. By using a specific pharmacological inhibitor of SK2, we showed that ADPN affects smooth muscle cell membrane properties and contractile machinery via SK2 activation in gastric fundus, adding a piece of knowledge to the action mechanisms of this hormone. These findings help to identify ADPN and its receptors as new therapeutic targets or as possible prognostic markers for diseases with altered energy balance and for pathologies with fat mass content alterations.

7.
FASEB J ; 37(8): e23061, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37389926

RESUMO

Endometriosis is a chronic gynecological disease affecting ~10% women in the reproductive age characterized by the growth of endometrial glands and stroma outside the uterine cavity. The inflammatory process has a key role in the initiation and progression of the disorder. Currently, there are no available early diagnostic tests and therapy relies exclusively on symptomatic drugs, so that elucidation of the complex molecular mechanisms involved in the pathogenesis of endometriosis is an unmet need. The signaling of the bioactive sphingolipid sphingosine 1-phosphate (S1P) is deeply dysregulated in endometriosis. S1P modulates a variety of fundamental cellular processes, including inflammation, neo-angiogenesis, and immune responses acting mainly as ligand of a family of G-protein-coupled receptors named S1P receptors (S1PR), S1P1-5 . Here, we demonstrated that the mitogen-activated protein kinase ERK5, that is expressed in endometriotic lesions as determined by quantitative PCR, is activated by S1P in human endometrial stromal cells. S1P-induced ERK5 activation was shown to be triggered by S1P1/3 receptors via a SFK/MEK5-dependent axis. S1P-induced ERK5 activation was, in turn, responsible for the increase of reactive oxygen species and proinflammatory cytokine expression in human endometrial stromal cells. The present findings indicate that the S1P signaling, via ERK5 activation, supports a proinflammatory response in the endometrium and establish the rationale for the exploitation of innovative therapeutic targets for endometriosis.


Assuntos
Endometriose , Humanos , Feminino , Masculino , Espécies Reativas de Oxigênio , Esfingosina , Esfingolipídeos
8.
Molecules ; 28(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37241854

RESUMO

The interest in the use of copper as a metal scaffold for the development of novel chemotherapeutics has considerably grown in recent years. This is mainly due to the relatively lower toxicity of copper complexes with respect to platinum drugs (i.e., cisplatin), the different mechanisms of action, and the cheaper cost. In the last decades, hundreds of copper-based complexes were developed and screened as anticancer agents, with the antesignanus of all compounds being copper bis-phenanthroline [Cu(phen)2]2+ developed by D.S. Sigman in the late 1990s. In particular, copper(phen) derivatives have been shown high interest in their capacity to interact with DNA by nucleobase intercalation. Here, we report the synthesis and chemical characterization of four novel copper(II) complexes functionalised with phenanthroline derivatives containing biotin. Biotin, also known as Vitamin B7, is involved in a series of metabolic processes, and its receptors are often overexpressed in many tumour cells. A detailed biological analysis including cytotoxicity in 2D and 3D, cellular drug uptake, DNA interaction, and morphological studies are discussed.


Assuntos
Antineoplásicos , Complexos de Coordenação , Cobre/química , Fenantrolinas/química , Biotina , Antineoplásicos/química , DNA/química , Complexos de Coordenação/farmacologia
9.
Reprod Biomed Online ; 47(1): 15-25, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37137790

RESUMO

RESEARCH QUESTION: Is the hypusinated form of the eukaryotic translation initiation factor 5A (EIF5A) present in human myometrium, leiomyoma and leiomyosarcoma, and does it regulate cell proliferation and fibrosis? DESIGN: The hypusination status of eIF5A in myometrial and leiomyoma patient-matched tissues was evaluated by immunohistochemistry and Western blotting as well as in leiomyosarcoma tissues by immunohistochemistry. Myometrial, leiomyoma and leiomyosarcoma cell lines were treated with N1-guanyl-1,7-diaminoheptane (GC-7), responsible for the inhibition of the first step of eIF5A hypunization, and the proliferation rate was determined by MTT assay; fibronectin expression was analysed by Western blotting. Finally, expression of fibronectin in leiomyosarcoma tissues was detected by immunohistochemistry. RESULTS: The hypusinated form of eIF5A was present in all tissues examined, with an increasing trend of hypusinated eIF5A levels from normal myometrium to neoplastic benign leiomyoma up to neoplastic malignant leiomyosarcoma. The higher levels in leiomyoma compared with myometrium were confirmed by Western blotting (P = 0.0046). The inhibition of eIF5A hypusination, with GC-7 treatment at 100 nM, reduced the cell proliferation in myometrium (P = 0.0429), leiomyoma (P = 0.0030) and leiomyosarcoma (P = 0.0044) cell lines and reduced the expression of fibronectin in leiomyoma (P = 0.0077) and leiomyosarcoma (P = 0.0280) cells. The immunohistochemical staining of leiomyosarcoma tissue revealed that fibronectin was highly expressed in the malignant aggressive (central) part of the leiomyosarcoma lesion, where hypusinated eIF5A was also highly represented. CONCLUSIONS: These data support the hypothesis that eIF5A may be involved in the pathogenesis of myometrial benign and malignant pathologies.


Assuntos
Leiomioma , Leiomiossarcoma , Neoplasias Uterinas , Feminino , Humanos , Fibronectinas/metabolismo , Leiomiossarcoma/metabolismo , Leiomiossarcoma/patologia , Leiomioma/patologia , Proliferação de Células , Miométrio/metabolismo , Neoplasias Uterinas/patologia , Fator de Iniciação de Tradução Eucariótico 5A
10.
Vitam Horm ; 122: 171-191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36863793

RESUMO

Endometriosis is a benign gynecological disease affecting ∼10% of reproductive-aged women and is defined as the presence of endometrial glands and stroma outside the uterine cavity. Endometriosis can cause a variety of health problems, from pelvic discomfort to catamenial pneumothorax, but it's mainly linked with severe and chronic pelvic pain, dysmenorrhea, and deep dyspareunia, as well as reproductive issues. The pathogenesis of endometriosis involves an endocrine dysfunction, with estrogen dependency and progesterone resistance, and inflammatory mechanism activation, together with impaired cell proliferation and neuroangiogenesis. The present chapter aims to discuss the main epigenetic mechanisms related to estrogen receptors (ERs) and progesterone receptors (PRs) in patients with endometriosis. There are numerous epigenetic mechanisms participating in endometriosis, regulating the expression of the genes encoding these receptors both indirectly, through the regulation of transcription factors, and directly, through DNA methylation, histone modifications, micro RNAs and long noncoding RNAs. This represents an open field of investigation, which may lead to important clinical implications such as the development of epigenetic drugs for the treatment of endometriosis and the identification of specific and early biomarkers for the disease.


Assuntos
Endometriose , Receptores de Esteroides , Humanos , Feminino , Adulto , Receptores de Progesterona/genética , Endometriose/tratamento farmacológico , Endometriose/genética , Estrogênios , Hormônios Esteroides Gonadais , Epigênese Genética
11.
Reprod Sci ; 30(5): 1453-1461, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36289173

RESUMO

Endometriosis is a chronic inflammatory condition affecting women of reproductive age. A relevant feature of endometriosis is the presence of fibrotic tissue inside and around the lesions, thus contributing to the classic endometriosis-related symptoms, pain, and infertility. The molecular mechanisms responsible for the development of fibrosis in endometriosis are not yet defined. The present review aimed to examine the biological mechanisms and signalling pathways involved in fibrogenesis of endometriotic lesions, highlighting the difference between deep infiltrating and ovarian endometriosis. The main cell types involved in the development of fibrosis are platelets, myofibroblasts, macrophages, and sensory nerve fibers. Members of the transforming growth factor (TGF) -ß family, as well as the receptor Notch, or the bioactive sphingolipid sphingosine 1-phosphate (S1P), play a role in the development of tissue fibrosis, resulting in their metabolism and/or their signalling pathways altered in endometriotic lesions. It is relevant the knowledge of the molecular mechanisms that guide and support fibrosis in endometriosis, to identify new drug targets and provide new therapeutic approaches to patients.


Assuntos
Endometriose , Humanos , Feminino , Endometriose/metabolismo , Transdução de Sinais/fisiologia , Miofibroblastos/metabolismo , Plaquetas , Fator de Crescimento Transformador beta , Fibrose
12.
J Nutr Biochem ; 113: 109247, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36496062

RESUMO

To investigate whether short term fructose-rich diet induces changes in the gut microbiota as well as in skeletal muscle and adipose tissue physiology and verify whether they persist even after fructose withdrawal, young rats of 30 d of age were fed for 3 weeks a fructose-rich or control diet. At the end of the 3-weeks period, half of the rats from each group were maintained for further 3 weeks on a control diet. Metagenomic analysis of gut microbiota and short chain fatty acids levels (faeces and plasma) were investigated. Insulin response was evaluated at the whole-body level and both in skeletal muscle and epididymal adipose tissue, together with skeletal muscle mitochondrial function, oxidative stress, and lipid composition. In parallel, morphology and physiological status of epididymal adipose tissue was also evaluated. Reshaping of gut microbiota and increased content of short chain fatty acids was elicited by the fructose diet and abolished by switching back to control diet. On the other hand, most metabolic changes elicited by fructose-rich diet in skeletal muscle and epididymal adipose tissue persisted after switching to control diet. Increased dietary fructose intake even on a short-time basis elicits persistent changes in the physiology of metabolically relevant tissues, such as adipose tissue and skeletal muscle, through mechanisms that go well beyond the reshaping of gut microbiota. This picture delineates a harmful situation, in particular for the young populations, posed at risk of metabolic modifications that may persist in their adulthood.


Assuntos
Microbioma Gastrointestinal , Resistência à Insulina , Ratos , Animais , Frutose/efeitos adversos , Frutose/metabolismo , Dieta , Tecido Adiposo/metabolismo , Insulina/metabolismo , Hipertrofia/metabolismo , Músculo Esquelético/metabolismo
13.
FEBS J ; 290(1): 112-133, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35851748

RESUMO

Soluble oligomers arising from the aggregation of the amyloid beta peptide (Aß) have been identified as the main pathogenic agents in Alzheimer's disease (AD). Prefibrillar oligomers of the 42-residue form of Aß (Aß42 O) show membrane-binding capacity and trigger the disruption of Ca2+ homeostasis, a causative event in neuron degeneration. Since bioactive lipids have been recently proposed as potent protective agents against Aß toxicity, we investigated the involvement of sphingosine 1-phosphate (S1P) signalling pathway in Ca2+ homeostasis in living neurons exposed to Aß42 O. We show that both exogenous and endogenous S1P rescued neuronal Ca2+ dyshomeostasis induced by toxic Aß42 O in primary rat cortical neurons and human neuroblastoma SH-SY5Y cells. Further analysis revealed a strong neuroprotective effect of S1P1 and S1P4 receptors, and to a lower extent of S1P3 and S1P5 receptors, which activate the Gi -dependent signalling pathways, thus resulting in the endocytic internalization of the extrasynaptic GluN2B-containing N-methyl-D-aspartate receptors (NMDARs). Notably, the S1P beneficial effect can be sustained over time by sphingosine kinase-1 overexpression, thus counteracting the down-regulation of the S1P signalling induced by Aß42 O. Our findings disclose underlying mechanisms of S1P neuronal protection against harmful Aß42 O, suggesting that S1P and its signalling axis can be considered promising targets for therapeutic approaches for AD.


Assuntos
Doença de Alzheimer , Neuroblastoma , Ratos , Humanos , Animais , Receptores de N-Metil-D-Aspartato/genética , Peptídeos beta-Amiloides/metabolismo , Neuroblastoma/metabolismo , Neurônios/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo
14.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36232401

RESUMO

The sphingosine 1-phosphate (S1P) and endocannabinoid (ECS) systems comprehend bioactive lipids widely involved in the regulation of similar biological processes. Interactions between S1P and ECS have not been so far investigated in skeletal muscle, where both systems are active. Here, we used murine C2C12 myoblasts to investigate the effects of S1P on ECS elements by qRT-PCR, Western blotting and UHPLC-MS. In addition, the modulation of the mitochondrial membrane potential (ΔΨm), by JC-1 and Mitotracker Red CMX-Ros fluorescent dyes, as well as levels of protein controlling mitochondrial function, along with the oxygen consumption were assessed, by Western blotting and respirometry, respectively, after cell treatment with methanandamide (mAEA) and in the presence of S1P or antagonists to endocannabinoid-binding receptors. S1P induced a significant increase in TRPV1 expression both at mRNA and protein level, while it reduced the protein content of CB2. A dose-dependent effect of mAEA on ΔΨm, mediated by TRPV1, was evidenced; in particular, low doses were responsible for increased ΔΨm, whereas a high dose negatively modulated ΔΨm and cell survival. Moreover, mAEA-induced hyperpolarization was counteracted by S1P. These findings open new dimension to S1P and endocannabinoids cross-talk in skeletal muscle, identifying TRPV1 as a pivotal target.


Assuntos
Endocanabinoides , Corantes Fluorescentes , Animais , Ácidos Araquidônicos , Linhagem Celular , Endocanabinoides/metabolismo , Endocanabinoides/farmacologia , Corantes Fluorescentes/metabolismo , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/farmacologia , Camundongos , Mitocôndrias/metabolismo , Mioblastos/metabolismo , Alcamidas Poli-Insaturadas , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Esfingosina/farmacologia , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
15.
Reprod Biomed Online ; 45(1): 15-18, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35562234

RESUMO

RESEARCH QUESTION: Is sphingosine 1-phosphate (S1P) pathway involved in the process of fibrosis in adenomyosis? DESIGN: RNA was extracted from paraffin-embedded slices collected from the ectopic endometrium of patients with nodular adenomyosis (n = 27) and eutopic endometrium of healthy controls women (n = 29). Expression of genes involved in the metabolism and signalling of S1P, and actin-alpha-2 smooth muscle, encoded by ACTA2 gene, a gene involved in fibrogenesis, was evaluated by real-time polymerase chain reaction analysis. RESULTS: In adenomyotic samples, the expression of sphingosine kinase 1 (SPHK1), the enzyme responsible for the synthesis of S1P, and of S1P phosphatase 2 (SGPP2), the enzyme responsible for the conversion of S1P back to sphingosine, was lower (P = 0.0006; P = 0.0015), whereas that of calcium and integrin-binding protein 1, responsible for membrane translocation of SPHK1, was higher (P = 0.0001) compared with healthy controls. In S1P signalling, a higher expression of S1P receptor S1P3 (P = 0.001), and a lower expression of S1P2 (P = 0.0019) mRNA levels, were found compared with healthy endometrium. In adenomyotic nodules, a higher expression of ACTA2 mRNA levels were observed (P = 0.0001), which correlated with S1P3 levels (P = 0.0138). CONCLUSION: Present data show a profound dysregulation of the S1P signalling axis in adenomyosis. This study also highlights that the bioactive sphingolipid might be involved in the fibrotic tract of the disease, correlated with the expression of ACTA2, suggesting its role as novel potential biomarker of adenomyosis.


Assuntos
Adenomiose , Esfingosina , Adenomiose/genética , Adenomiose/metabolismo , Feminino , Fibrose , Humanos , Lisofosfolipídeos/genética , Lisofosfolipídeos/metabolismo , RNA Mensageiro , Esfingosina/análogos & derivados , Esfingosina/genética , Esfingosina/metabolismo
16.
Cells ; 11(4)2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35203362

RESUMO

BACKGROUND: Adiponectin (Adn), released by adipocytes and other cell types such as skeletal muscle, has insulin-sensitizing and anti-inflammatory properties. Sphingosine 1-phosphate (S1P) is reported to act as effector of diverse biological actions of Adn in different tissues. S1P is a bioactive sphingolipid synthesized by the phosphorylation of sphingosine catalyzed by sphingosine kinase (SK) 1 and 2. Consolidated findings support the key role of S1P in the biology of skeletal muscle. METHODS AND RESULTS: Here we provide experimental evidence that S1P signalling is modulated by globular Adn treatment being able to increase the phosphorylation of SK1/2 as well as the mRNA expression levels of S1P4 in C2C12 myotubes. These findings were confirmed by LC-MS/MS that showed an increase of S1P levels after Adn treatment. Notably, the involvement of S1P axis in Adn action was highlighted since, when SK1 and 2 were inhibited by PF543 and ABC294640 inhibitors, respectively, not only the electrophysiological changes but also the increase of oxygen consumption and of aminoacid levels induced by the hormone, were significantly inhibited. CONCLUSION: Altogether, these findings show that S1P biosynthesis is necessary for the electrophysiological properties and oxidative metabolism of Adn in skeletal muscle cells.


Assuntos
Adiponectina , Lisofosfolipídeos , Fibras Musculares Esqueléticas , Esfingosina , Adiponectina/metabolismo , Animais , Linhagem Celular , Cromatografia Líquida , Lisofosfolipídeos/metabolismo , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Estresse Oxidativo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Espectrometria de Massas em Tandem
17.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445567

RESUMO

S1P is the final product of sphingolipid metabolism, which interacts with five widely expressed GPCRs (S1P1-5). Increasing numbers of studies have indicated the importance of S1P3 in various pathophysiological processes. Recently, we have identified a pepducin (compound KRX-725-II) acting as an S1P3 receptor antagonist. Here, aiming to optimize the activity and selectivity profile of the described compound, we have synthesized a series of derivatives in which Tyr, in position 4, has been substituted with several natural aromatic and unnatural aromatic and non-aromatic amino acids. All the compounds were evaluated for their ability to inhibit vascular relaxation induced by KRX-725 (as S1P3 selective pepducin agonist) and KRX-722 (an S1P1-selective pepducin agonist). Those selective towards S1P3 (compounds V and VII) were also evaluated for their ability to inhibit skeletal muscle fibrosis. Finally, molecular dynamics simulations were performed to derive information on the preferred conformations of selective and unselective antagonists.


Assuntos
Peptídeos Penetradores de Células/farmacologia , Fibrose/tratamento farmacológico , Músculo Esquelético/efeitos dos fármacos , Doenças Musculares/tratamento farmacológico , Mioblastos/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Receptores de Esfingosina-1-Fosfato/antagonistas & inibidores , Animais , Fibrose/metabolismo , Fibrose/patologia , Masculino , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Mioblastos/metabolismo , Mioblastos/patologia , Receptores de Lisoesfingolipídeo
19.
Front Neurosci ; 15: 677988, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135730

RESUMO

Oligodendrocyte-formed myelin sheaths allow fast synaptic transmission in the brain. Impairments in the process of myelination, or demyelinating insults, might cause chronic diseases such as multiple sclerosis (MS). Under physiological conditions, remyelination is an ongoing process throughout adult life consisting in the differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes (OLs). During pathological events, this process fails due to unfavorable environment. Adenosine and sphingosine kinase/sphingosine 1-phosphate signaling axes (SphK/S1P) play important roles in remyelination processes. Remarkably, fingolimod (FTY720), a sphingosine analog recently approved for MS treatment, plays important roles in OPC maturation. We recently demonstrated that the selective stimulation of A2 B adenosine receptors (A2 B Rs) inhibit OPC differentiation in vitro and reduce voltage-dependent outward K+ currents (I K ) necessary to OPC maturation, whereas specific SphK1 or SphK2 inhibition exerts the opposite effect. During OPC differentiation A2 B R expression increases, this effect being prevented by SphK1/2 blockade. Furthermore, selective silencing of A2 B R in OPC cultures prompts maturation and, intriguingly, enhances the expression of S1P lyase, the enzyme responsible for irreversible S1P catabolism. Finally, the existence of an interplay between SphK1/S1P pathway and A2 B Rs in OPCs was confirmed since acute stimulation of A2 B Rs activates SphK1 by increasing its phosphorylation. Here the role of A2 B R and SphK/S1P signaling during oligodendrogenesis is reviewed in detail, with the purpose to shed new light on the interaction between A2 B Rs and S1P signaling, as eventual innovative targets for the treatment of demyelinating disorders.

20.
Int J Mol Sci ; 22(3)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535610

RESUMO

Phosphatidic acid (PA) is a bioactive phospholipid capable of regulating key biological functions, including neutrophil respiratory burst, chemotaxis, or cell growth and differentiation. However, the mechanisms whereby PA exerts these actions are not completely understood. In this work, we show that PA stimulates myoblast proliferation, as determined by measuring the incorporation of [3H]thymidine into DNA and by staining the cells with crystal violet. PA induced the rapid phosphorylation of Akt and ERK1/2, and pretreatment of the cells with specific small interferin RNA (siRNA) to silence the genes encoding these kinases, or with selective pharmacologic inhibitors, blocked PA-stimulated myoblast proliferation. The mitogenic effects of PA were abolished by the preincubation of the myoblasts with pertussis toxin, a Gi protein inhibitor, suggesting the implication of Gi protein-coupled receptors in this action. Although some of the effects of PA have been associated with its possible conversion to lysoPA (LPA), treatment of the myoblasts with PA for up to 60 min did not produce any significant amount of LPA in these cells. Of interest, pharmacological blockade of the LPA receptors 1 and 2, or specific siRNA to silence the genes encoding these receptors, abolished PA-stimulated myoblast proliferation. Moreover, PA was able to compete with LPA for binding to LPA receptors, suggesting that PA can act as a ligand of LPA receptors. It can be concluded that PA stimulates myoblast proliferation through interaction with LPA1 and LPA2 receptors and the subsequent activation of the PI3K/Akt and MEK/ERK1-2 pathways, independently of LPA formation.


Assuntos
Mioblastos/metabolismo , Ácidos Fosfatídicos/química , Receptores de Ácidos Lisofosfatídicos/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células , Quimiotaxia/efeitos dos fármacos , DNA/metabolismo , Lisofosfolipídeos/química , Lisofosfolipídeos/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Ligação Proteica , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA