Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 9: 1087505, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761987

RESUMO

With age, the physiological responses to occasional or regular stressors from a broad range of functions tend to change and adjust at a different pace and restoring these functions in the normal healthy range becomes increasingly challenging. Even if this natural decline is somehow unavoidable, opportunities exist to slow down and attenuate the impact of advancing age on major physiological processes which, when weakened, constitute the hallmarks of aging. This narrative review revisits the current knowledge related to the aging process and its impact on key metabolic functions including immune, digestive, nervous, musculoskeletal, and cardiovascular functions; and revisits insights into the important biological targets that could inspire effective strategies to promote healthy aging.

2.
Front Nutr ; 6: 181, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31850360

RESUMO

Age related muscle wasting leads to overall reductions of lean body mass, reduced muscle strength, and muscle function resulting in compromised quality of life. Utilizing novel nutritional strategies to attenuate such losses is of great importance in elderly individuals. We aimed to test if a complete dietary supplement containing 25 g of milk proteins and ingested in the evening before bed would improve protein metabolism in terms of whole body protein balance over a 10 h overnight period following ingestion of the test drink in healthy middle-aged male subjects. In addition we also assessed the rates of muscle protein synthesis during the second half of the night in order to see if previously reported extended amino acidemia during sleep results in increased rates of muscle protein synthesis. Seventeen healthy middle-aged male subjects (59.4 ± 3.2 year) consumed a dietary supplement drink at 21:00 containing either 25 g milk protein concentrate, 25 g maltodextrin, 7.75 g canola oil (treatment group), or an isocaloric protein void drink (placebo group). Muscle protein synthesis was assessed from a muscle biopsy following the continuous intravenous infusion of 13C-phenylalanine for 5 h (from 03:00 to 08:00). Whole body protein balance was greater in the treatment group (-0.13 ± 11.30 g prot/10 h) compared to placebo (-12.22 ± 6.91 g prot/10 h) (P ≤ 0.01). In contrast, no changes were observed on rates of muscle protein synthesis during the second half of the night. Ingestion of a dietary supplement containing 25 g of milk proteins significantly reduced the negative protein balance observed during the night. Therefore, pre-bedtime protein ingestion may attenuate overnight losses of lean tissue in healthy elderly men. Despite increases in aminoacidemia during the second part of the night, no changes were observed in the rates of muscle protein synthesis during this time. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT02041143.

3.
J Agric Food Chem ; 63(40): 8829-37, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26378382

RESUMO

The present study sought to understand how the microstructure of protein gels impacts lipolysis of gelled emulsions. The selected system consisted of an oil-in-water (o/w) emulsion embedded within gelatin gels. The gelatin-gelled emulsions consisted of a discontinuous network of aggregated emulsion droplets (mesoscale), dispersed within a continuous network of gelatin (microscale). The viscoelastic properties of the gelled emulsions were dominated by the rheological behavior of the gelatin, suggesting a gelatin continuous microstructure rather than a bicontinuous gel. A direct relationship between the speed of fat digestion and gel average mesh size was found, indicating that the digestion of fat within gelatin-gelled emulsions is controlled by the ability of the gel's microstructure to slow lipase diffusion to the interface of fat droplets. Digestion of fat was facilitated by gradual breakdown of the gelatin network, which mainly occurred via surface erosion catalyzed by proteases. Overall, this work has demonstrated that the lipolysis kinetics of gelled emulsions is driven by the microstructure of protein gels; this knowledge is key for the future development of microstructures to control fat digestion and/or the delivery of nutrients to different parts of the gastrointestinal tract.


Assuntos
Digestão , Gelatina/química , Metabolismo dos Lipídeos , Emulsões , Trato Gastrointestinal/metabolismo , Gelatina/metabolismo , Géis/química , Géis/metabolismo , Humanos , Cinética , Lipídeos/química , Lipólise , Modelos Biológicos , Porosidade
4.
Langmuir ; 31(5): 1776-83, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25565379

RESUMO

There has been a resurgence of interest in complex coacervation, a form of liquid-liquid phase separation (LLPS) in systems of oppositely charged macroions, but very few reports describe the somewhat anomalous coacervation between acidic and basic proteins, which occurs under very narrow ranges of conditions. We sought to identify the roles of equilibrium interprotein complexes during the coacervation of ß-lactoglobulin dimer (BLG2) with lactoferrin (LF) and found that this LLPS arises specifically from LF(BLG2)2. We followed the progress of complexation and coacervation as a function of r, the LF/BLG molar ratio, using turbidity to monitor the degree of coacervation and proton release and dynamic light scattering (DLS) to assess the stoichiometry and abundance of complexes. Isothermal titration calorimetry (ITC) showed that initial complex formation is endothermic, but a large exotherm related to coacervate formation obscured other regions. On the basis of turbidimetry, proton release, and DLS, we propose a speciation diagram that presents the abundance of various complexes as a function of r. Although multiple species could be simultaneously present, distinct regions could be identified corresponding to equilibria among particular protein pairs.


Assuntos
Lactoferrina/química , Lactoferrina/isolamento & purificação , Lactoglobulinas/química , Lactoglobulinas/isolamento & purificação , Eletricidade Estática , Animais , Bovinos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Proteica , Prótons
5.
Soft Matter ; 10(37): 7262-8, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25099892

RESUMO

Lactoferrin (LF) and ß-lactoglobulin (BLG) are among the protein pairs that exhibit heteroprotein coacervation, a unique and relatively unexamined type of liquid-liquid phase separation (LLPS). In prior work we found that LF and BLG undergo coacervation at highly constrained conditions of pH, ionic strength and protein stoichiometry. The molar stoichiometry in coacervate and supernatant is LF : BLG2 1 : 2 (where BLG2 represents the 38 kDa BLG dimer), suggesting that this is the primary unit of the coacervate. The precise balance of repulsive and attractive forces among these units, thought to stabilize the coacervate, is achieved only at limited conditions of pH and I. Our purpose here is to define the process by which such structural units form, and to elucidate the forces among them that lead to the long-range order found in equilibrium coacervates. We use confocal laser scanning microscopy (CLSM), small angle neutron scattering (SANS), and rheology to (1) define the uniformity of interprotein spacing within the coacervate phase, (2) verify structural unit dimensions and spacing, and (3) rationalize bulk fluid properties in terms of inter-unit forces. Electrostatic modeling is used in concert with SANS to develop a molecular model for the primary unit of the coacervate that accounts for bulk viscoelastic properties. Modeling suggests that the charge anisotropies of the two proteins stabilize the dipole-like LF(BLG2)2 primary unit, while assembly of these dipoles into higher order equilibrium structures governs the macroscopic properties of the coacervate.


Assuntos
Lactoferrina/química , Lactoglobulinas/química , Animais , Anisotropia , Bovinos , Elasticidade , Concentração de Íons de Hidrogênio , Íons , Microscopia Confocal , Concentração Osmolar , Conformação Proteica , Multimerização Proteica , Reologia , Espalhamento a Baixo Ângulo , Eletricidade Estática , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA