Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321148

RESUMO

Despite the importance of citrullination in physiology and disease, global identification of citrullinated proteins, and the precise targeted sites, has remained challenging. Here we employed quantitative-mass-spectrometry-based proteomics to generate a comprehensive atlas of citrullination sites within the HL60 leukemia cell line following differentiation into neutrophil-like cells. We identified 14,056 citrullination sites within 4,008 proteins and quantified their regulation upon inhibition of the citrullinating enzyme PADI4. With this resource, we provide quantitative and site-specific information on thousands of PADI4 substrates, including signature histone marks and transcriptional regulators. Additionally, using peptide microarrays, we demonstrate the potential clinical relevance of certain identified sites, through distinct reactivities of antibodies contained in synovial fluid from anti-CCP-positive and anti-CCP-negative people with rheumatoid arthritis. Collectively, we describe the human citrullinome at a systems-wide level, provide a resource for understanding citrullination at the mechanistic level and link the identified targeted sites to rheumatoid arthritis.

2.
Brain Behav Immun ; 113: 353-373, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37543250

RESUMO

Frontotemporal dementia (FTD) is a common cause of early-onset dementia, with no current treatment options. FTD linked to chromosome 3 (FTD3) is a rare sub-form of the disease, caused by a point mutation in the Charged Multivesicular Body Protein 2B (CHMP2B). This mutation causes neuronal phenotypes, such as mitochondrial deficiencies, accompanied by metabolic changes and interrupted endosomal-lysosomal fusion. However, the contribution of glial cells to FTD3 pathogenesis has, until recently, been largely unexplored. Glial cells play an important role in most neurodegenerative disorders as drivers and facilitators of neuroinflammation. Microglia are at the center of current investigations as potential pro-inflammatory drivers. While gliosis has been observed in FTD3 patient brains, it has not yet been systematically analyzed. In the light of this, we investigated the role of microglia in FTD3 by implementing human induced pluripotent stem cells (hiPSC) with either a heterozygous or homozygous CHMP2B mutation, introduced into a healthy control hiPSC line via CRISPR-Cas9 precision gene editing. These hiPSC were differentiated into microglia to evaluate the pro-inflammatory profile and metabolic state. Moreover, hiPSC-derived neurons were cultured with conditioned microglia media to investigate disease specific interactions between the two cell populations. Interestingly, we identified two divergent inflammatory microglial phenotypes resulting from the underlying mutations: a severe pro-inflammatory profile in CHMP2B homozygous FTD3 microglia, and an "unresponsive" CHMP2B heterozygous FTD3 microglial state. These findings correlate with our observations of increased phagocytic activity in CHMP2B homozygous, and impaired protein degradation in CHMP2B heterozygous FTD3 microglia. Metabolic mapping confirmed these differences, revealing a metabolic reprogramming of the CHMP2B FTD3 microglia, displayed as a compensatory up-regulation of glutamine metabolism in the CHMP2B homozygous FTD3 microglia. Intriguingly, conditioned CHMP2B homozygous FTD3 microglia media caused neurotoxic effects, which was not evident for the heterozygous microglia. Strikingly, IFN-γ treatment initiated an immune boost of the CHMP2B heterozygous FTD3 microglia, and conditioned microglia media exposure promoted neural outgrowth. Our findings indicate that the microglial profile, activity, and behavior is highly dependent on the status of the CHMP2B mutation. Our results suggest that the heterozygous state of the mutation in FTD3 patients could potentially be exploited in form of immune-boosting intervention strategies to counteract neurodegeneration.


Assuntos
Demência Frontotemporal , Células-Tronco Pluripotentes Induzidas , Humanos , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Microglia/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo
3.
NAR Genom Bioinform ; 5(2): lqad053, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37260509

RESUMO

Arena3Dweb is an interactive web tool that visualizes multi-layered networks in 3D space. In this update, Arena3Dweb supports directed networks as well as up to nine different types of connections between pairs of nodes with the use of Bézier curves. It comes with different color schemes (light/gray/dark mode), custom channel coloring, four node clustering algorithms which one can run on-the-fly, visualization in VR mode and predefined layer layouts (zig-zag, star and cube). This update also includes enhanced navigation controls (mouse orbit controls, layer dragging and layer/node selection), while its newly developed API allows integration with external applications as well as saving and loading of sessions in JSON format. Finally, a dedicated Cytoscape app has been developed, through which users can automatically send their 2D networks from Cytoscape to Arena3Dweb for 3D multi-layer visualization. Arena3Dweb is accessible at http://arena3d.pavlopouloslab.info or http://arena3d.org.

4.
Front Neurosci ; 17: 1120086, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875643

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia, with no current cure. Consequently, alternative approaches focusing on early pathological events in specific neuronal populations, besides targeting the well-studied amyloid beta (Aß) accumulations and Tau tangles, are needed. In this study, we have investigated disease phenotypes specific to glutamatergic forebrain neurons and mapped the timeline of their occurrence, by implementing familial and sporadic human induced pluripotent stem cell models as well as the 5xFAD mouse model. We recapitulated characteristic late AD phenotypes, such as increased Aß secretion and Tau hyperphosphorylation, as well as previously well documented mitochondrial and synaptic deficits. Intriguingly, we identified Golgi fragmentation as one of the earliest AD phenotypes, indicating potential impairments in protein processing and post-translational modifications. Computational analysis of RNA sequencing data revealed differentially expressed genes involved in glycosylation and glycan patterns, whilst total glycan profiling revealed minor glycosylation differences. This indicates general robustness of glycosylation besides the observed fragmented morphology. Importantly, we identified that genetic variants in Sortilin-related receptor 1 (SORL1) associated with AD could aggravate the Golgi fragmentation and subsequent glycosylation changes. In summary, we identified Golgi fragmentation as one of the earliest disease phenotypes in AD neurons in various in vivo and in vitro complementary disease models, which can be exacerbated via additional risk variants in SORL1.

5.
Nucleic Acids Res ; 51(D1): D638-D646, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36370105

RESUMO

Much of the complexity within cells arises from functional and regulatory interactions among proteins. The core of these interactions is increasingly known, but novel interactions continue to be discovered, and the information remains scattered across different database resources, experimental modalities and levels of mechanistic detail. The STRING database (https://string-db.org/) systematically collects and integrates protein-protein interactions-both physical interactions as well as functional associations. The data originate from a number of sources: automated text mining of the scientific literature, computational interaction predictions from co-expression, conserved genomic context, databases of interaction experiments and known complexes/pathways from curated sources. All of these interactions are critically assessed, scored, and subsequently automatically transferred to less well-studied organisms using hierarchical orthology information. The data can be accessed via the website, but also programmatically and via bulk downloads. The most recent developments in STRING (version 12.0) are: (i) it is now possible to create, browse and analyze a full interaction network for any novel genome of interest, by submitting its complement of encoded proteins, (ii) the co-expression channel now uses variational auto-encoders to predict interactions, and it covers two new sources, single-cell RNA-seq and experimental proteomics data and (iii) the confidence in each experimentally derived interaction is now estimated based on the detection method used, and communicated to the user in the web-interface. Furthermore, STRING continues to enhance its facilities for functional enrichment analysis, which are now fully available also for user-submitted genomes.


Assuntos
Mapeamento de Interação de Proteínas , Proteínas , Mapeamento de Interação de Proteínas/métodos , Bases de Dados de Proteínas , Proteínas/genética , Proteínas/metabolismo , Genômica , Proteômica , Interface Usuário-Computador
6.
Neurobiol Dis ; 178: 105980, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36572121

RESUMO

Alzheimer's disease (AD) is a progressive and irreversible brain disorder, which can occur either sporadically, due to a complex combination of environmental, genetic, and epigenetic factors, or because of rare genetic variants in specific genes (familial AD, or fAD). A key hallmark of AD is the accumulation of amyloid beta (Aß) and Tau hyperphosphorylated tangles in the brain, but the underlying pathomechanisms and interdependencies remain poorly understood. Here, we identify and characterise gene expression changes related to two fAD mutations (A79V and L150P) in the Presenilin-1 (PSEN1) gene. We do this by comparing the transcriptomes of glutamatergic forebrain neurons derived from fAD-mutant human induced pluripotent stem cells (hiPSCs) and their individual isogenic controls generated via precision CRISPR/Cas9 genome editing. Our analysis of Poly(A) RNA-seq data detects 1111 differentially expressed coding and non-coding genes significantly altered in fAD. Functional characterisation and pathway analysis of these genes reveal profound expression changes in constituents of the extracellular matrix, important to maintain the morphology, structural integrity, and plasticity of neurons, and in genes involved in calcium homeostasis and mitochondrial oxidative stress. Furthermore, by analysing total RNA-seq data we reveal that 30 out of 31 differentially expressed circular RNA genes are significantly upregulated in the fAD lines, and that these may contribute to the observed protein-coding gene expression changes. The results presented in this study contribute to a better understanding of the cellular mechanisms impacted in AD neurons, ultimately leading to neuronal damage and death.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Peptídeos beta-Amiloides/metabolismo , Transcriptoma , Presenilina-1/genética , Presenilina-1/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Mutação/genética , Neurônios/metabolismo , Precursor de Proteína beta-Amiloide/genética
7.
J Proteome Res ; 22(2): 637-646, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36512705

RESUMO

Biological networks are often used to represent complex biological systems, which can contain several types of entities. Analysis and visualization of such networks is supported by the Cytoscape software tool and its many apps. While earlier versions of stringApp focused on providing intraspecies protein-protein interactions from the STRING database, the new stringApp 2.0 greatly improves the support for heterogeneous networks. Here, we highlight new functionality that makes it possible to create networks that contain proteins and interactions from STRING as well as other biological entities and associations from other sources. We exemplify this by complementing a published SARS-CoV-2 interactome with interactions from STRING. We have also extended stringApp with new data and query functionality for protein-protein interactions between eukaryotic parasites and their hosts. We show how this can be used to retrieve and visualize a cross-species network for a malaria parasite, its host, and its vector. Finally, the latest stringApp version has an improved user interface, allows retrieval of both functional associations and physical interactions, and supports group-wise enrichment analysis of different parts of a network to aid biological interpretation. stringApp is freely available at https://apps.cytoscape.org/apps/stringapp.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Software , Proteínas , Eucariotos
8.
Front Microbiol ; 13: 909493, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992681

RESUMO

The production of the alpha-amylase (AMY) enzyme in Bacillus subtilis at a high rate leads to the accumulation of unfolded AMY, which causes secretion stress. The over-expression of the PrsA chaperone aids enzyme folding and reduces stress. To identify affected pathways and potential mechanisms involved in the reduced growth, we analyzed the transcriptomic differences during fed-batch fermentation between a PrsA over-expressing strain and control in a time-series RNA-seq experiment. We observe transcription in 542 unannotated regions, of which 234 had significant changes in expression levels between the samples. Moreover, 1,791 protein-coding sequences, 80 non-coding genes, and 20 riboswitches overlapping UTR regions of coding genes had significant changes in expression. We identified putatively regulated biological processes via gene-set over-representation analysis of the differentially expressed genes; overall, the analysis suggests that the PrsA over-expression affects ATP biosynthesis activity, amino acid metabolism, and cell wall stability. The investigation of the protein interaction network points to a potential impact on cell motility signaling. We discuss the impact of these highlighted mechanisms for reducing secretion stress or detrimental aspects of PrsA over-expression during AMY production.

9.
Front Immunol ; 13: 865777, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734163

RESUMO

Differential microRNA (miRNA or miR) regulation is linked to the development and progress of many diseases, including inflammatory bowel disease (IBD). It is well-established that miRNAs are involved in the differentiation, maturation, and functional control of immune cells. miRNAs modulate inflammatory cascades and affect the extracellular matrix, tight junctions, cellular hemostasis, and microbiota. This review summarizes current knowledge of differentially expressed miRNAs in mucosal tissues and peripheral blood of patients with ulcerative colitis and Crohn's disease. We combined comprehensive literature curation with computational meta-analysis of publicly available high-throughput datasets to obtain a consensus set of miRNAs consistently differentially expressed in mucosal tissues. We further describe the role of the most relevant differentially expressed miRNAs in IBD, extract their potential targets involved in IBD, and highlight their diagnostic and therapeutic potential for future investigations.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , MicroRNAs , Colite Ulcerativa/terapia , Doença de Crohn/diagnóstico , Humanos , MicroRNAs/genética
10.
Front Mol Biosci ; 9: 1081176, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685283

RESUMO

Background: Ulcerative colitis (UC) is a disorder with unknown etiology, and animal models play an essential role in studying its molecular pathophysiology. Here, we aim to identify common conserved pathological UC-related gene expression signatures between humans and mice that can be used as treatment targets and/or biomarker candidates. Methods: To identify differentially regulated protein-coding genes and non-coding RNAs, we sequenced total RNA from the colon and blood of the most widely used dextran sodium sulfate Ulcerative colitis mouse. By combining this with public human Ulcerative colitis data, we investigated conserved gene expression signatures and pathways/biological processes through which these genes may contribute to disease development/progression. Results: Cross-species integration of human and mouse Ulcerative colitis data resulted in the identification of 1442 genes that were significantly differentially regulated in the same direction in the colon and 157 in blood. Of these, 51 genes showed consistent differential regulation in the colon and blood. Less known genes with importance in disease pathogenesis, including SPI1, FPR2, TYROBP, CKAP4, MCEMP1, ADGRG3, SLC11A1, and SELPLG, were identified through network centrality ranking and validated in independent human and mouse cohorts. Conclusion: The identified Ulcerative colitis conserved transcriptional signatures aid in the disease phenotyping and future treatment decisions, drug discovery, and clinical trial design.

11.
Stem Cell Reports ; 16(11): 2736-2751, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34678206

RESUMO

Frontotemporal dementia type 3 (FTD3), caused by a point mutation in the charged multivesicular body protein 2B (CHMP2B), affects mitochondrial ultrastructure and the endolysosomal pathway in neurons. To dissect the astrocyte-specific impact of mutant CHMP2B expression, we generated astrocytes from human induced pluripotent stem cells (hiPSCs) and confirmed our findings in CHMP2B mutant mice. Our data provide mechanistic insights into how defective autophagy causes perturbed mitochondrial dynamics with impaired glycolysis, increased reactive oxygen species, and elongated mitochondrial morphology, indicating increased mitochondrial fusion in FTD3 astrocytes. This shift in astrocyte homeostasis triggers a reactive astrocyte phenotype and increased release of toxic cytokines, which accumulate in nuclear factor kappa b (NF-κB) pathway activation with increased production of CHF, LCN2, and C3 causing neurodegeneration.


Assuntos
Astrócitos/metabolismo , Autofagia/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Demência Frontotemporal/genética , Predisposição Genética para Doença/genética , Mutação , Animais , Astrócitos/citologia , Diferenciação Celular/genética , Células Cultivadas , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Demência Frontotemporal/metabolismo , Perfilação da Expressão Gênica/métodos , Glicólise/genética , Homeostase/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , RNA-Seq/métodos , Transdução de Sinais/genética
13.
J Biol Chem ; 297(3): 101031, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34339738

RESUMO

The Q80K polymorphism in the NS3-4A protease of the hepatitis C virus is associated with treatment failure of direct-acting antiviral agents. This polymorphism is highly prevalent in genotype 1a infections and stably transmitted between hosts. Here, we investigated the underlying molecular mechanisms of evolutionarily conserved coevolving amino acids in NS3-Q80K and revealed potential implications of epistatic interactions in immune escape and variants persistence. Using purified protein, we characterized the impact of epistatic amino acid substitutions on the physicochemical properties and peptide cleavage kinetics of the NS3-Q80K protease. We found that Q80K destabilized the protease protein fold (p < 0.0001). Although NS3-Q80K showed reduced peptide substrate turnover (p < 0.0002), replicative fitness in an H77S.3 cell culture model of infection was not significantly inferior to the WT virus. Epistatic substitutions at residues 91 and 174 in NS3-Q80K stabilized the protein fold (p < 0.0001) and leveraged the WT protease stability. However, changes in protease stability inversely correlated with enzymatic activity. In infectious cell culture, these secondary substitutions were not associated with a gain of replicative fitness in NS3-Q80K variants. Using molecular dynamics, we observed that the total number of residue contacts in NS3-Q80K mutants correlated with protein folding stability. Changes in the number of contacts reflected the compensatory effect on protein folding instability by epistatic substitutions. In summary, epistatic substitutions in NS3-Q80K contribute to viral fitness by mechanisms not directly related to RNA replication. By compensating for protein-folding instability, epistatic interactions likely protect NS3-Q80K variants from immune cell recognition.


Assuntos
Epistasia Genética , Hepacivirus/genética , Hepatite C/virologia , Substituição de Aminoácidos , Genes Virais , Humanos , Simulação de Dinâmica Molecular , Mutação , Polimorfismo Genético , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
14.
Nucleic Acids Res ; 49(4): 1859-1871, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33524155

RESUMO

Animal models are crucial for advancing our knowledge about the molecular pathways involved in human diseases. However, it remains unclear to what extent tissue expression of pathways in healthy individuals is conserved between species. In addition, organism-specific information on pathways in animal models is often lacking. Within these limitations, we explore the possibilities that arise from publicly available data for the animal models mouse, rat, and pig. We approximate the animal pathways activity by integrating the human counterparts of curated pathways with tissue expression data from the models. Specifically, we compare whether the animal orthologs of the human genes are expressed in the same tissue. This is complicated by the lower coverage and worse quality of data in rat and pig as compared to mouse. Despite that, from 203 human KEGG pathways and the seven tissues with best experimental coverage, we identify 95 distinct pathways, for which the tissue expression in one animal model agrees better with human than the others. Our systematic pathway-tissue comparison between human and three animal modes points to specific similarities with human and to distinct differences among the animal models, thereby suggesting the most suitable organism for modeling a human pathway or tissue.


Assuntos
Modelos Animais , Animais , Expressão Gênica , Genoma , Humanos , Camundongos , Especificidade de Órgãos , Mapeamento de Interação de Proteínas , Ratos , Suínos
15.
Nucleic Acids Res ; 49(D1): D605-D612, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33237311

RESUMO

Cellular life depends on a complex web of functional associations between biomolecules. Among these associations, protein-protein interactions are particularly important due to their versatility, specificity and adaptability. The STRING database aims to integrate all known and predicted associations between proteins, including both physical interactions as well as functional associations. To achieve this, STRING collects and scores evidence from a number of sources: (i) automated text mining of the scientific literature, (ii) databases of interaction experiments and annotated complexes/pathways, (iii) computational interaction predictions from co-expression and from conserved genomic context and (iv) systematic transfers of interaction evidence from one organism to another. STRING aims for wide coverage; the upcoming version 11.5 of the resource will contain more than 14 000 organisms. In this update paper, we describe changes to the text-mining system, a new scoring-mode for physical interactions, as well as extensive user interface features for customizing, extending and sharing protein networks. In addition, we describe how to query STRING with genome-wide, experimental data, including the automated detection of enriched functionalities and potential biases in the user's query data. The STRING resource is available online, at https://string-db.org/.


Assuntos
Bases de Dados de Proteínas , Mapeamento de Interação de Proteínas , Proteínas/genética , Interface Usuário-Computador
16.
F1000Res ; 9: 157, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32399202

RESUMO

Cytoscape is an open-source software used to analyze and visualize biological networks. In addition to being able to import networks from a variety of sources, Cytoscape allows users to import tabular node data and visualize it onto networks. Unfortunately, such data tables can only contain one row of data per node, whereas omics data often have multiple rows for the same gene or protein, representing different post-translational modification sites, peptides, splice isoforms, or conditions. Here, we present a new app, Omics Visualizer, that allows users to import data tables with several rows referring to the same node, connect them to one or more networks, and visualize the connected data onto networks. Omics Visualizer uses the Cytoscape enhancedGraphics app to show the data either in the nodes (pie visualization) or around the nodes (donut visualization), where the colors of the slices represent the imported values. If the user does not provide a network, the app can retrieve one from the STRING database using the Cytoscape stringApp. The Omics Visualizer app is freely available at https://apps.cytoscape.org/apps/omicsvisualizer.


Assuntos
Biologia Computacional/métodos , Visualização de Dados , Software , Proteômica
17.
Retrovirology ; 17(1): 13, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32430025

RESUMO

BACKGROUND: HIV-1 can develop resistance to antiretroviral drugs, mainly through mutations within the target regions of the drugs. In HIV-1 protease, a majority of resistance-associated mutations that develop in response to therapy with protease inhibitors are found in the protease's active site that serves also as a binding pocket for the protease inhibitors, thus directly impacting the protease-inhibitor interactions. Some resistance-associated mutations, however, are found in more distant regions, and the exact mechanisms how these mutations affect protease-inhibitor interactions are unclear. Furthermore, some of these mutations, e.g. N88S and L76V, do not only induce resistance to the currently administered drugs, but contrarily induce sensitivity towards other drugs. In this study, mutations N88S and L76V, along with three other resistance-associated mutations, M46I, I50L, and I84V, are analysed by means of molecular dynamics simulations to investigate their role in complexes of the protease with different inhibitors and in different background sequence contexts. RESULTS: Using these simulations for alchemical calculations to estimate the effects of mutations M46I, I50L, I84V, N88S, and L76V on binding free energies shows they are in general in line with the mutations' effect on [Formula: see text] values. For the primary mutation L76V, however, the presence of a background mutation M46I in our analysis influences whether the unfavourable effect of L76V on inhibitor binding is sufficient to outweigh the accompanying reduction in catalytic activity of the protease. Finally, we show that L76V and N88S changes the hydrogen bond stability of these residues with residues D30/K45 and D30/T31/T74, respectively. CONCLUSIONS: We demonstrate that estimating the effect of both binding pocket and distant mutations on inhibitor binding free energy using alchemical calculations can reproduce their effect on the experimentally measured [Formula: see text] values. We show that distant site mutations L76V and N88S affect the hydrogen bond network in the protease's active site, which offers an explanation for the indirect effect of these mutations on inhibitor binding. This work thus provides valuable insights on interplay between primary and background mutations and mechanisms how they affect inhibitor binding.


Assuntos
Farmacorresistência Viral/genética , Inibidores da Protease de HIV/farmacologia , Protease de HIV/metabolismo , HIV-1/efeitos dos fármacos , HIV-1/genética , Mutação , Sítios de Ligação , Domínio Catalítico , Humanos , Ligação de Hidrogênio , Concentração Inibidora 50 , Simulação de Dinâmica Molecular
18.
J Mol Biol ; 431(12): 2354-2368, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31051172

RESUMO

A variety of amino acid substitutions in the NS3-4A protease of the hepatitis C virus lead to protease inhibitor (PI) resistance. Many of these significantly impair the replication fitness of the resistant variants in a genotype- and subtype-dependent manner, a critical factor in determining the probability with which resistant variants will persist. However, the underlying molecular mechanisms are unknown. Here, we present a novel residue-interaction network approach to determine how near-neighbor interactions of PI resistance mutations in NS3-4A can impact protease functional sites dependent on their genomic background. We constructed subtype-specific consensus residue networks for subtypes 1a and 1b from protease structure ensembles combined with biological properties of protein residues and evolutionary amino acid conservation. By applying local and global network topology analysis and visual exploration, we characterize PI resistance-associated sites and outline differences in near-neighbor interactions. We find local residue-interaction patterns and features at protease functional sites that are subtype specific. The noncovalent bonding patterns indicate higher fitness costs conferred by PI resistance mutations in a subtype 1b genomic background and explain the prevalence of Q80K and R155K in subtype 1a. Based on local residue interactions, we predict a subtype-specific role for the protease residue NS3-Q80 in molecular mechanisms related to the assembly of infectious virus particles that is supported by experimental data on the capacity of Q80K variants to replicate and produce infectious virus in subtype 1a and 1b cell culture.


Assuntos
Hepacivirus/fisiologia , Hepatite C/virologia , Serina Proteases/metabolismo , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Antivirais/farmacologia , Farmacorresistência Viral , Hepacivirus/química , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Hepatite C/metabolismo , Humanos , Modelos Moleculares , Inibidores de Proteases/farmacologia , Conformação Proteica , Serina Proteases/química , Proteínas não Estruturais Virais/química , Replicação Viral/efeitos dos fármacos
19.
J Proteome Res ; 18(2): 623-632, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30450911

RESUMO

Protein networks have become a popular tool for analyzing and visualizing the often long lists of proteins or genes obtained from proteomics and other high-throughput technologies. One of the most popular sources of such networks is the STRING database, which provides protein networks for more than 2000 organisms, including both physical interactions from experimental data and functional associations from curated pathways, automatic text mining, and prediction methods. However, its web interface is mainly intended for inspection of small networks and their underlying evidence. The Cytoscape software, on the other hand, is much better suited for working with large networks and offers greater flexibility in terms of network analysis, import, and visualization of additional data. To include both resources in the same workflow, we created stringApp, a Cytoscape app that makes it easy to import STRING networks into Cytoscape, retains the appearance and many of the features of STRING, and integrates data from associated databases. Here, we introduce many of the stringApp features and show how they can be used to carry out complex network analysis and visualization tasks on a typical proteomics data set, all through the Cytoscape user interface. stringApp is freely available from the Cytoscape app store: http://apps.cytoscape.org/apps/stringapp .


Assuntos
Análise de Dados , Proteômica/métodos , Software , Biologia Computacional/métodos , Internet , Mapas de Interação de Proteínas , Interface Usuário-Computador
20.
Nucleic Acids Res ; 47(D1): D607-D613, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30476243

RESUMO

Proteins and their functional interactions form the backbone of the cellular machinery. Their connectivity network needs to be considered for the full understanding of biological phenomena, but the available information on protein-protein associations is incomplete and exhibits varying levels of annotation granularity and reliability. The STRING database aims to collect, score and integrate all publicly available sources of protein-protein interaction information, and to complement these with computational predictions. Its goal is to achieve a comprehensive and objective global network, including direct (physical) as well as indirect (functional) interactions. The latest version of STRING (11.0) more than doubles the number of organisms it covers, to 5090. The most important new feature is an option to upload entire, genome-wide datasets as input, allowing users to visualize subsets as interaction networks and to perform gene-set enrichment analysis on the entire input. For the enrichment analysis, STRING implements well-known classification systems such as Gene Ontology and KEGG, but also offers additional, new classification systems based on high-throughput text-mining as well as on a hierarchical clustering of the association network itself. The STRING resource is available online at https://string-db.org/.


Assuntos
Genômica/métodos , Mapeamento de Interação de Proteínas/métodos , Software , Animais , Bases de Dados Genéticas , Ontologia Genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA