Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38979315

RESUMO

The opportunistic pathogen Pseudomonas aeruginosa causes debilitating lung infections in people with cystic fibrosis, as well as eye, burn, and wound infections in otherwise immunocompetent individuals. Many of P. aeruginosa's virulence factors are regulated by environmental changes associated with human infection, such as a change in temperature from ambient to human body temperature. One such virulence factor is protease IV (PIV). Interestingly, piv expression is higher at ambient temperatures (22-28°C) compared to human body temperature (37°C). We found that piv expression was thermoregulated at stationary phase, but not exponential phase, and that piv is thermoregulated at the level of transcription. Protein levels of known transcriptional regulators of piv, the quorum sensing regulator LasR and the gene-silencing histone nucleoid silencing proteins MvaT/MvaU, were not thermoregulated. Using a transcriptional reporter for piv, we show that LasR activates piv expression at stationary phase at 25°C but not 37°C, while MvaT/MvaU are not required for piv thermoregulation. We also identified a las box in the piv promoter, which is important for piv thermoregulation. We propose that LasR directly regulates piv at stationary phase at 25°C but has a negligible impact at 37°C. Here, we show that piv is uniquely regulated by LasR in a temperature-dependent manner. Our findings suggest that the LasRI quorum sensing regulon of P. aeruginosa may not be fully characterized and that growth at non-standard laboratory conditions such as lower temperatures could reveal previously unrecognized quorum sensing regulated genes.

2.
Appl Environ Microbiol ; 88(2): e0151421, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34788068

RESUMO

There is an increasing interest in phage therapy as an alternative to antibiotics for treating bacterial infections, especially using phages that select for evolutionary trade-offs between increased phage resistance and decreased fitness traits, such as virulence, in target bacteria. A vast repertoire of virulence factors allows the opportunistic bacterial pathogen Shigella flexneri to invade human gut epithelial cells, replicate intracellularly, and evade host immunity through intercellular spread. It has been previously shown that OmpA is necessary for the intercellular spread of S. flexneri. We hypothesized that a phage which uses OmpA as a receptor to infect S. flexneri should select for phage-resistant mutants with attenuated intercellular spread. Here, we show that phage A1-1 requires OmpA as a receptor and selects for reduced virulence in S. flexneri. We characterized five phage-resistant mutants by measuring phenotypic changes in various traits: cell-membrane permeability, total lipopolysaccharide (LPS), sensitivity to antibiotics, and susceptibility to other phages. The results separated the mutants into two groups: R1 and R2 phenotypically resembled ompA knockouts, whereas R3, R4, and R5 were similar to LPS-deficient strains. Whole-genome sequencing confirmed that R1 and R2 had mutations in ompA, while R3, R4, and R5 had mutations in the LPS inner-core biosynthesis genes gmhA and gmhC. Bacterial plaque assays confirmed that all the phage-resistant mutants were incapable of intercellular spread. We concluded that selection for S. flexneri resistance to phage A1-1 generally reduced virulence (i.e., intercellular spread), but this trade-off could be mediated by mutations either in ompA or in LPS-core genes that likely altered OmpA conformation. IMPORTANCE Shigella flexneri is a facultative intracellular pathogen of humans and a leading cause of bacillary dysentery. With few effective treatments and rising antibiotic resistance in these bacteria, there is increasing interest in alternatives to classical infection management of S. flexneri infections. Phage therapy poses an attractive alternative, particularly if a therapeutic phage can be found that results in an evolutionary trade-off between phage resistance and bacterial virulence. Here, we isolate a novel lytic phage from water collected in Cuatro Cienegas, Mexico, which uses the OmpA porin of S. flexneri as a receptor. We use phenotypic assays and genome sequencing to show that phage A1-1 selects for phage-resistant mutants which can be grouped into two categories: OmpA-deficient mutants and LPS-deficient mutants. Despite these underlying mechanistic differences, we confirmed that naturally occurring phage A1-1 selected for evolved phage resistance which coincided with impaired intercellular spread of S. flexneri in a eukaryotic infection model.


Assuntos
Bacteriófagos , Disenteria Bacilar , Bacteriófagos/genética , Disenteria Bacilar/microbiologia , Humanos , Shigella flexneri/genética , Virulência , Fatores de Virulência
3.
Adv Microb Physiol ; 79: 25-88, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34836612

RESUMO

Toward the end of August 2000, the 6.3 Mbp whole genome sequence of Pseudomonas aeruginosa strain PAO1 was published. With 5570 open reading frames (ORFs), PAO1 had the largest microbial genome sequenced up to that point in time-including a large proportion of metabolic, transport and antimicrobial resistance genes supporting its ability to colonize diverse environments. A remarkable 9% of its ORFs were predicted to encode proteins with regulatory functions, providing new insight into bacterial network complexity as a function of network size. In this celebratory article, we fast forward 20 years, and examine how access to this resource has transformed our understanding of P. aeruginosa. What follows is more than a simple review or commentary; we have specifically asked some of the leaders in the field to provide personal reflections on how the PAO1 genome sequence, along with the Pseudomonas Community Annotation Project (PseudoCAP) and Pseudomonas Genome Database (pseudomonas.com), have contributed to the many exciting discoveries in this field. In addition to bringing us all up to date with the latest developments, we also ask our contributors to speculate on how the next 20 years of Pseudomonas research might pan out.


Assuntos
Genoma Bacteriano , Pseudomonas aeruginosa , Aniversários e Eventos Especiais , Humanos , Fases de Leitura Aberta , Infecções por Pseudomonas , Pseudomonas aeruginosa/genética
4.
Adv Virus Res ; 111: 63-110, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34663499

RESUMO

Phages are viruses that specifically infect bacteria, and their biodiversity contributes to historical and current development of phage therapy to treat myriad bacterial infections. Phage therapy holds promise as an alternative to failing chemical antibiotics, but there are benefits and costs of this technology. Here, we review the rich history of phage therapy, highlighting reasons (often political) why it was widely rejected by Western medicine until recently. One longstanding idea involves mixing different phages together in cocktails, to increase the probability of killing target pathogenic bacteria without pre-screening for phage susceptibility. By challenging 30 lytic phages to infect 14 strains of the bacteria Pseudomonas aeruginosa, we showed that some phages were "generalists" with broad host-ranges, emphasizing that extreme host-specificity of phages was not necessarily a liability. Using a "greedy algorithm" analysis, we identified the best cocktail mixture of phages to achieve broad bacteria killing. Additionally, we review how virus host-range can evolve and connect lessons learned from virus emergence-including contributions of elevated virus mutation rates in promoting emergence and virus evolutionary transitions from specialized to generalized host-use-as cautionary tales for avoiding risk of "off-target" phage emergence on commensal bacteria in microbiomes. Throughout, we highlight how fundamental understanding of virus ecology and evolution is vital for developing phage therapy; heeding these principles should help in designing therapeutic strategies that do not recapitulate consequences of virus selection to emerge on novel hosts.


Assuntos
Bacteriófagos , Terapia por Fagos , Bactérias/genética , Bacteriófagos/genética , Especificidade de Hospedeiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA