Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Integr Plant Biol ; 65(12): 2645-2659, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37929676

RESUMO

Maize (Zea mays) requires substantial amounts of nitrogen, posing a challenge for its cultivation. Recent work discovered that some ancient Mexican maize landraces harbored diazotrophic bacteria in mucilage secreted by their aerial roots. To see if this trait is retained in modern maize, we conducted a field study of aerial root mucilage (ARM) in 258 inbred lines. We observed that ARM secretion is common in modern maize, but the amount significantly varies, and only a few lines have retained the nitrogen-fixing traits found in ancient landraces. The mucilage of the high-ARM inbred line HN5-724 had high nitrogen-fixing enzyme activity and abundant diazotrophic bacteria. Our genome-wide association study identified 17 candidate genes associated with ARM across three environments. Knockouts of one candidate gene, the subtilase family gene ZmSBT3, confirmed that it negatively regulates ARM secretion. Notably, the ZmSBT3 knockout lines had increased biomass and total nitrogen accumulation under nitrogen-free culture conditions. High ARM was associated with three ZmSBT3 haplotypes that were gradually lost during maize domestication, being retained in only a few modern inbred lines such as HN5-724. In summary, our results identify ZmSBT3 as a potential tool for enhancing ARM, and thus nitrogen fixation, in maize.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Zea mays/genética , Zea mays/microbiologia , Nitrogênio , Polissacarídeos , Bactérias
2.
Plant Dis ; 106(8): 2066-2073, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35259305

RESUMO

Internal fungal contamination in cereal grains may affect plant growth and result in health concerns for humans and animals. Fusarium verticillioides is a seedborne fungus that can systemically infect maize. However, few efforts had been devoted to studying the genetics of maize resistance to seedborne F. verticillioides. In this study, we developed a disease evaluation method to identify resistance to seedborne F. verticillioides in maize, by which a set of 121 diverse maize inbred lines were evaluated. A 160 F10-generation recombinant inbred line (RIL) population derived from a cross of the resistant (BT-1) and susceptible (N6) inbred line was further used to identify major quantitative trait loci (QTLs) for seedborne F. verticillioides resistance. Eighteen inbred lines with a high resistance to seedborne F. verticillioides were characterized and could be used as potential germplasm resources for genetic improvement of maize resistance. Six QTLs with high heritability across multiple environments were detected on chromosomes 3, 4, 6, and 10, among which was a major QTL, qISFR4-1. Located on chromosome 4 at the interval of 12922609-13418025, qISFR4-1 could explain 16.63% of the total phenotypic variance. Distinct expression profiles of eight candidate genes in qISFR4-1 between BT-1 and N6 inbred lines suggested their pivotal regulatory roles in seedborne F. verticillioides resistance. Taken together, these results will improve our understanding of the resistant mechanisms of seedborne F. verticillioides and would provide valuable germplasm resources for disease resistance breeding in maize.


Assuntos
Fusarium , Doenças das Plantas , Locos de Características Quantitativas , Zea mays , Resistência à Doença/genética , Fusarium/patogenicidade , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Zea mays/genética , Zea mays/microbiologia
3.
BMC Genomics ; 21(1): 357, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398006

RESUMO

BACKGROUND: Fusarium ear rot (FER) caused by Fusarium verticillioides is a major disease of maize that reduces grain yield and quality globally. However, there have been few reports of major loci for FER were verified and cloned. RESULT: To gain a comprehensive understanding of the genetic basis of natural variation in FER resistance, a recombinant inbred lines (RIL) population and one panel of inbred lines were used to map quantitative trait loci (QTL) for resistance. As a result, a total of 10 QTL were identified by linkage mapping under four environments, which were located on six chromosomes and explained 1.0-7.1% of the phenotypic variation. Epistatic mapping detected four pairs of QTL that showed significant epistasis effects, explaining 2.1-3.0% of the phenotypic variation. Additionally, 18 single nucleotide polymorphisms (SNPs) were identified across the whole genome by genome-wide association study (GWAS) under five environments. Compared linkage and association mapping revealed five common intervals located on chromosomes 3, 4, and 5 associated with FER resistance, four of which were verified in different near-isogenic lines (NILs) populations. GWAS identified three candidate genes in these consistent intervals, which belonged to the Glutaredoxin protein family, actin-depolymerizing factors (ADFs), and AMP-binding proteins. In addition, two verified FER QTL regions were found consistent with Fusarium cob rot (FCR) and Fusarium seed rot (FSR). CONCLUSIONS: These results revealed that multi pathways were involved in FER resistance, which was a complex trait that was controlled by multiple genes with minor effects, and provided important QTL and genes, which could be used in molecular breeding for resistance.


Assuntos
Mapeamento Cromossômico/métodos , Resistência à Doença/genética , Fusarium/patogenicidade , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Zea mays/genética , Fatores de Despolimerização de Actina/genética , Cromossomos de Plantas , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Zea mays/microbiologia
4.
J Exp Bot ; 70(18): 4849-4864, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30972421

RESUMO

It is predicted that high-temperature stress will increasingly affect crop yields worldwide as a result of climate change. In order to determine the genetic basis of thermotolerance of seed-set in maize under field conditions, we performed mapping of quantitative trait loci (QTLs) in a recombinant inbred line (RIL) population using a collection of 8329 specifically developed high-density single-nucleotide polymorphism (SNP) markers, combined with a genome-wide association study (GWAS) of 261 diverse maize lines using 259 973 SNPs. In total, four QTLs and 17 genes associated with 42 SNPs related to thermotolerance of seed-set were identified. Among them, four candidate genes were found in both linkage mapping and GWAS. Thermotolerance of seed-set was increased significantly in near-isogenic lines (NILs) that incorporated the four candidate genes in a susceptible parent background. The expression profiles of two of the four genes showed that they were induced by high temperatures in the maize tassel in a tolerant parent background. Our results indicate that thermotolerance of maize seed-set is regulated by multiple genes each of which has minor effects, with calcium signaling playing a central role. The genes identified may be exploited in breeding programs to improve seed-set and yield of maize under heat stress.


Assuntos
Genes de Plantas/fisiologia , Genoma de Planta , Termotolerância/genética , Zea mays/fisiologia , Mapeamento Cromossômico , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sementes/fisiologia , Zea mays/genética
5.
Theor Appl Genet ; 132(4): 1049-1059, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30535634

RESUMO

KEY MESSAGE: We lay the foundation for further research on maize resistance to Fusarium verticillioides cob rot by identifying a candidate resistance gene. Fusarium verticillioides ear rot is the most common type of maize ear rot in the Huanghuaihai Plain of China. Ear rot resistance includes cob and kernel resistance. Most of the current literature concentrates on kernel resistance, and genetic studies on cob resistance are scarce. We aimed on identifying the QTLs responsible for F. verticillioides cob rot (FCR) resistance. Twenty-eight genes associated with 48 single nucleotide polymorphisms (SNPs) were identified (P < 10-4) to correlate with FCR resistance using a whole-genome association study. The major quantitative trait locus, qRcfv2, for FCR resistance was identified on chromosome 2 through linkage mapping and was validated in near-isogenic line populations. Two candidate genes associated with two SNPs were detected in the qRcfv2 region with a lower threshold (P < 10-3). Through real-time fluorescence quantitative PCR, one candidate gene was found to have no expression in the cob but the other was expressed in response to F. verticillioides. These results lay a foundation for research on the resistance mechanisms of cob and provide resources for marker-assisted selection.


Assuntos
Resistência à Doença/genética , Fusarium/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Zea mays/genética , Zea mays/microbiologia , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estudo de Associação Genômica Ampla , Fenótipo , Mapeamento Físico do Cromossomo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Reprodutibilidade dos Testes
6.
Bio Protoc ; 8(23): e3099, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34532546

RESUMO

Maize ear rot is a worldwide fungal disease mainly caused by Fusarium verticillioides and Fusarium graminearum. Maize planted in the field was inoculated with Fusarium verticillioides at the filling stage, 15 days after pollination. Two milliliters of spore suspension with a concentration of 5 x 106/ml was injected into the middle of the top ear using pricking ear method to cause maize ear rot. The thirty days after inoculation was the most suitable time for phenotypic evaluation of Fusarium resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA