Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Vet Res ; 19(1): 178, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773158

RESUMO

BACKGROUND: Dandelion has a great potential to be used as feed additive. Using microbial fermentation technology to degrade cell walls is conducive to enable better release of bioactive compounds of dandelion. This study intended to explore the effect of fermented dandelion (FD) on production performance, meat quality, immune function, and intestinal microbiota of broiler chickens. One-hundred and twenty 1-day-old male Arbor Acres broiler chickens were randomly allotted into three treatments: CON (basal diet, control), LFD and HFD (basal diet with 500 and 1000 mg/kg FD, respectively), with five replicates of eight birds each. The experiment lasted for 42 days. RESULTS: The results showed that birds in HFD group had increased ADG during 1-21 days (P < 0.05). On day 21, the bursa of Fabricius index of birds in LFD group was higher (P < 0.05), while the serum contents of IFN-γ and TNF-ɑ were lower in HFD group (P < 0.05). FD supplementation decreased the observed_species, shannon, chao1 and ace indexes (P < 0.05) as well as the abundance of Bacteroidota, Bacteroides, and Alistipes (P < 0.05). Birds in HFD group had higher abundance of Firmicutes and lower abundance of Verrucomicrobiota (P < 0.05). LFD group had lower abundance of unidentified_bacteria (P < 0.05). On day 42, the abdominal fat yield of HFD group was decreased (P < 0.05). Birds in LFD group had lower L* and b* values of breast muscle (P < 0.05), while higher spleen index. The CAT activities of breast muscle of FD groups were higher (P < 0.05). CONCLUSION: In summary, dietary FD supplementation at 1000 mg/kg improved production performance and immune function and modulated microbiota composition in ileum of broiler chickens. FD can be supplemented in the diet to enhance performance and health of broiler chickens, of which 1000 mg/kg FD is more effective.


Assuntos
Microbioma Gastrointestinal , Taraxacum , Animais , Masculino , Galinhas/microbiologia , Suplementos Nutricionais/análise , Dieta/veterinária , Carne/análise , Imunidade , Ração Animal/análise
2.
Biomed Pharmacother ; 154: 113622, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36081291

RESUMO

Osteoclasts play an important role in maintaining the relative stability of bone mass. Abnormal number and function of osteoclasts are closely related to osteoporosis and osteolytic diseases. Thiaplakortone B (TPB), a natural compound derived from the Great Barrier Reef sponge Plakortis lita, has been reported to inhibit the growth of the malaria parasite, Plasmodium falciparum, but its effect on osteoclastogenesis has not been previously investigated. In our study, we found that TPB suppresses the receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast formation and resorption activity by tartrate-resistant acid phosphatase (TRAcP) staining, immunofluorescence staining of F-actin belts and hydroxyapatite resorption assay. Furthermore, using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting analysis, we discovered that TPB inhibits osteoclast-specific genes and proteins expression. Mechanistically, TPB blocks multiple upstream pathways including calcium oscillation, NF-κB, mitogen-activated protein kinase (MAPK) and nuclear factor of activated T cells 1(NFATc1) signaling pathways. In vivo, TPB could dampen bone loss in an ovariectomy (OVX) mouse model by micro-CT assessment and histological staining. Therefore, TPB may serve as a potential therapeutic candidate for the treatment of osteoporosis and osteolysis.


Assuntos
NF-kappa B , Osteoporose , Animais , Sinalização do Cálcio , Diferenciação Celular , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoclastos , Osteogênese , Osteoporose/patologia , Ovariectomia , Ligante RANK/metabolismo
3.
Biomed Pharmacother ; 154: 113529, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36030586

RESUMO

Osteoporosis a common disease in postmenopausal women which contains significant impact on the living quality of women. With the aging of the population, the number of patients suffer from osteoporosis has shown a significant increase. Given the limitations of clinical drugs for the treatment of osteoporosis, natural extracts with small side effects have a great application prospect in the treatment of osteoporosis. Praeruptorin B (Pra-B), is one of the main components found in the roots of Peucedanum praeruptorum Dunn and exhibits anti-inflammatory effects. However, there is no research on the influence of Pra-B on osteoporosis. Here, we showed that Pra-B can dose-dependently suppress osteoclastogenesis without cytotoxicity. Receptor activator of nuclear factor kappa-B (NF-κB) ligand (RANKL)-induced the nuclear import of P65 was inhibited by Pra-B, which indicated the suppressive effect of Pra-B on NF-κB signaling. Further, Pra-B enhanced the expression of Glutathione S-transferase Pi 1 (GSTP1) and promoted the S-glutathionylation of IKKß to inhibit the nuclear translocation of P65. Moreover, in vivo experiments showed that Pra-B considerably attenuated the bone loss in ovariectomy (OVX)-induced mice. Collectively, our studies revealed that Pra-B suppress the NF-κB signaling targeting GSTP1 to rescued RANKL-induced osteoclastogenesis in vitro and OVX-induced bone loss in vivo, supporting the potential of Pra-B for treating osteoporosis in the future.


Assuntos
Quinase I-kappa B , Osteoporose , Animais , Diferenciação Celular , Cumarínicos , Feminino , Glutationa S-Transferase pi/metabolismo , Humanos , Quinase I-kappa B/metabolismo , Camundongos , NF-kappa B/metabolismo , Osteoclastos , Osteogênese , Osteoporose/metabolismo , Ovariectomia , Ligante RANK/metabolismo , Ligante RANK/farmacologia
4.
Front Cell Dev Biol ; 9: 693533, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368142

RESUMO

Spinal cord injury (SCI) is a destructive and complex disorder of the central nervous system (CNS) for which there is no clinical treatment. Blood-spinal cord barrier (BSCB) rupture is a critical event in SCI that aggravates nerve injury. Therefore, maintaining the integrity of the BSCB may be a potential method to treat SCI. Here, we showed that patchouli alcohol (PA) exerts protective effects against SCI. We discovered that PA significantly prevented hyperpermeability of the BSCB by reducing the loss of tight junctions (TJs) and endothelial cells. PA also suppressed endoplasmic reticulum stress and apoptosis in vitro. Furthermore, in a rat model of SCI, PA effectively improved neurological deficits. Overall, these results prove that PA exerts neuroprotective effects by maintaining BSCB integrity and thus be a promising candidate for SCI treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA