Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Brain Struct Funct ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801538

RESUMO

Previous studies on structural covariance network (SCN) suggested that patients with insomnia disorder (ID) show abnormal structural connectivity, primarily affecting the somatomotor network (SMN) and default mode network (DMN). However, evaluating a single structural index in SCN can only reveal direct covariance relationship between two brain regions, failing to uncover synergistic changes in multiple structural features. To cover this research gap, the present study utilized novel morphometric similarity networks (MSN) to examine the morphometric similarity between cortical areas in terms of multiple sMRI parameters measured at each area. With seven T1-weighted imaging morphometric features from the Desikan-Killiany atlas, individual MSN was constructed for patients with ID (N = 87) and healthy control groups (HCs, N = 84). Two-sample t-test revealed differences in MSN between patients with ID and HCs. Correlation analyses examined associations between MSNs and sleep quality, insomnia symptom severity, and depressive symptoms severity in patients with ID. The right paracentral lobule (PCL) exhibited decreased morphometric similarity in patients with ID compared to HCs, mainly manifested by its de-differentiation (meaning loss of distinctiveness) with the SMN, DMN, and ventral attention network (VAN), as well as its decoupling with the visual network (VN). Greater PCL-based de-differentiation correlated with less severe insomnia and fewer depressive symptoms in the patients group. Additionally, patients with less depressive symptoms showed greater PCL de-differentiation from the SMN. As an important pilot step in revealing the underlying morphometric similarity alterations in insomnia disorder, the present study identified the right PCL as a hub region that is de-differentiated with other high-order networks. Our study also revealed that MSN has an important potential to capture clinical significance related to insomnia disorder.

2.
Nutrients ; 16(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38732499

RESUMO

Individuals exhibiting high scores on the fatness subscale of the negative-physical-self scale (NPSS-F) are characterized by heightened preoccupation with body fat accompanied by negative body image perceptions, often leading to excessive dieting behaviors. This demographic constitutes a considerable segment of the populace in China, even among those who are not obese. Nonetheless, scant empirical inquiries have delved into the behavioral and neurophysiological profiles of individuals possessing a healthy body mass index (BMI) alongside elevated NPSS-F scores. This study employed an experimental paradigm integrating go/no-go and one-back tasks to assess inhibitory control and working memory capacities concerning food-related stimuli across three adult cohorts: those with normal weight and low NPSS-F scores, those with normal weight and high NPSS-F scores, and individuals classified as obese. Experimental stimuli comprised high- and low-caloric-food pictures with concurrent electroencephalogram (EEG) and photoplethysmogram (PPG) recordings. Individuals characterized by high NPSS-F scores and normal weight exhibited distinctive electrophysiological responses compared to the other two cohorts, evident in event-related potential (ERP) components, theta and alpha band oscillations, and heart rate variability (HRV) patterns. In essence, the findings underscore alterations in electrophysiological reactivity among individuals possessing high NPSS-F scores and a healthy BMI in the context of food-related stimuli, underscoring the necessity for increased attention to this demographic alongside individuals affected by obesity.


Assuntos
Índice de Massa Corporal , Obesidade , Humanos , Masculino , Feminino , Obesidade/fisiopatologia , Obesidade/psicologia , Adulto , Adulto Jovem , Eletroencefalografia , Potenciais Evocados , Memória de Curto Prazo/fisiologia , Frequência Cardíaca/fisiologia , Inibição Psicológica , China , Imagem Corporal/psicologia
3.
Neuroimage ; 290: 120574, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38467346

RESUMO

Obesity has a profound impact on metabolic health thereby adversely affecting brain structure and function. However, the majority of previous studies used a single structural index to investigate the link between brain structure and body mass index (BMI), which hinders our understanding of structural covariance between regions in obesity. This study aimed to examine the relationship between macroscale cortical organization and BMI using novel morphometric similarity networks (MSNs). The individual MSNs were first constructed from individual eight multimodal cortical morphometric features between brain regions. Then the relationship between BMI and MSNs within the discovery sample of 434 participants was assessed. The key findings were further validated in an independent sample of 192 participants. We observed that the lateral non-reward orbitofrontal cortex (lOFC) exhibited decoupling (i.e., reduction in integration) in obesity, which was mainly manifested by its decoupling with the cognitive systems (i.e., DMN and FPN) while the medial reward orbitofrontal cortex (mOFC) showed de-differentiation (i.e., decrease in distinctiveness) in obesity, which was mainly represented by its de-differentiation with the cognitive and attention systems (i.e., DMN and VAN). Additionally, the lOFC showed de-differentiation with the visual system in obesity, while the mOFC showed decoupling with the visual system and hyper-coupling with the sensory-motor system in obesity. As an important first step in revealing the role of underlying structural covariance in body mass variability, the present study presents a novel mechanism that underlies the reward-control interaction imbalance in obesity, thus can inform future weight-management approaches.


Assuntos
Córtex Pré-Frontal , Recompensa , Humanos , Córtex Pré-Frontal/diagnóstico por imagem , Lobo Frontal/diagnóstico por imagem , Encéfalo , Obesidade
4.
Int J Neural Syst ; 34(4): 2450018, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38372035

RESUMO

Cognitive flexibility refers to the capacity to shift between patterns of mental function and relies on functional activity supported by anatomical structures. However, how the brain's structural-functional covarying is preconfigured in the resting state to facilitate cognitive flexibility under tasks remains unrevealed. Herein, we investigated the potential relationship between individual cognitive flexibility performance during the trail-making test (TMT) and structural-functional covariation of the large-scale multimodal covariance network (MCN) using magnetic resonance imaging (MRI) and electroencephalograph (EEG) datasets of 182 healthy participants. Results show that cognitive flexibility correlated significantly with the intra-subnetwork covariation of the visual network (VN) and somatomotor network (SMN) of MCN. Meanwhile, inter-subnetwork interactions across SMN and VN/default mode network/frontoparietal network (FPN), as well as across VN and ventral attention network (VAN)/dorsal attention network (DAN) were also found to be closely related to individual cognitive flexibility. After using resting-state MCN connectivity as representative features to train a multi-layer perceptron prediction model, we achieved a reliable prediction of individual cognitive flexibility performance. Collectively, this work offers new perspectives on the structural-functional coordination of cognitive flexibility and also provides neurobiological markers to predict individual cognitive flexibility.


Assuntos
Função Executiva , Imageamento por Ressonância Magnética , Humanos , Eletroencefalografia , Vias Neurais/diagnóstico por imagem , Cognição , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico
5.
Int J Clin Health Psychol ; 24(1): 100432, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38269356

RESUMO

Background: Emerging evidence increasingly suggests that poor sleep quality is associated with depressive symptoms. The hippocampus might play a crucial role in the interplay between sleep disturbance and depressive symptomatology, e.g., hippocampal atrophy is typically seen in both insomnia disorder and depression. Thus, examining the role of hippocampal volume in the interplay between poor sleep quality and depressive symptoms in large healthy populations is vital. Methods: We investigated the association between self-reported sleep quality, depressive symptoms, and hippocampal total and subfields' volumes in 1603 healthy young adults from the Behavioral Brain Research Project. Mediation analysis explored the mediating role of hippocampal volumes between sleep quality and depressive symptoms. Results: Self-reported sleep quality and depressive symptoms were positively correlated. In addition, it negatively related to three hippocampal subfields but not total hippocampal volume. In particular, hippocampal subfield DG and CA4 volumes mediated the interrelationship between poor sleep quality and depressive symptoms. Conclusions: Our findings improved the current understanding of the relationship between sleep disturbance, depressive symptomatology, and hippocampal subfields in healthy populations. Considering the crucial role of DG in hippocampal neurogenesis, our results suggest that poor sleep quality may contribute to depression through a reduction of DG volume leading to impaired neurogenesis which is crucial for the regulation of mood.

6.
Obesity (Silver Spring) ; 32(2): 291-303, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38269472

RESUMO

OBJECTIVE: Overweight and obesity, as commonly indicated by a higher BMI, are associated with functional alterations in the brain, which may potentially result in cognitive decline and emotional illness. However, the manner in which these detrimental impacts manifest in the brain's dynamic characteristics remains largely unknown. METHODS: Based on two independent resting-state functional magnetic resonance imaging data sets (Behavioral-Brain Research Project of Chinese Personality, n = 1923; Human Connectome Project, n = 998), the current study employed a Hidden Markov model to identify the spatiotemporal features of brain activity states. Subsequently, the study examined the changes in brain-state dynamics and the corresponding functional outcomes that arise with an increase in BMI. RESULTS: Elevated BMI tends to shift the brain's activity states toward a greater emphasis on a specific set of states, i.e., the metastate, that are relevant to the joint activities of sensorimotor systems, making it harder to transfer to the metastate of transmodal systems. These findings were reconfirmed in a longitudinal sample (Behavioral-Brain Research Project of Chinese Personality, n = 34) that exhibited a significant increase in BMI at follow-up. Importantly, the alternation of brain-state dynamics specifically mediated the relationships between BMI and adverse functional outcomes, including cognitive decline and symptoms of mental illness. CONCLUSIONS: The altered brain-state dynamics within the sensorimotor-to-transmodal hierarchy provide new insights into obesity-related brain dysfunctions and mental health issues.


Assuntos
Encéfalo , Emoções , Humanos , Índice de Massa Corporal , Encéfalo/diagnóstico por imagem , Obesidade
7.
Schizophr Bull ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38156676

RESUMO

BACKGROUND AND HYPOTHESIS: Schizotypy has been conceptualized as a continuum of symptoms with marked genetic, neurobiological, and sensory-cognitive overlaps to schizophrenia. Hierarchical organization represents a general organizing principle for both the cortical connectome supporting sensation-to-cognition continuum and gene expression variability across the cortex. However, a mapping of connectome hierarchy to schizotypy remains to be established. Importantly, the underlying changes of the cortical connectome hierarchy that mechanistically link gene expressions to schizotypy are unclear. STUDY DESIGN: The present study applied novel connectome gradient on resting-state fMRI data from 1013 healthy young adults to investigate schizotypy-associated sensorimotor-to-transmodal connectome hierarchy and assessed its similarity with the connectome hierarchy of schizophrenia. Furthermore, normative and differential postmortem gene expression data were utilized to examine transcriptional profiles linked to schizotypy-associated connectome hierarchy. STUDY RESULTS: We found that schizotypy was associated with a compressed functional connectome hierarchy. Moreover, the pattern of schizotypy-related hierarchy exhibited a positive correlation with the connectome hierarchy observed in schizophrenia. This pattern was closely colocated with the expression of schizophrenia-related genes, with the correlated genes being enriched in transsynaptic, receptor signaling and calcium ion binding. CONCLUSIONS: The compressed connectome hierarchy suggests diminished functional system differentiation, providing a novel and holistic system-level basis for various sensory-cognition deficits in schizotypy. Importantly, its linkage with schizophrenia-altered hierarchy and schizophrenia-related gene expression yields new insights into the neurobiological continuum of psychosis. It also provides mechanistic insight into how gene variation may drive alterations in functional hierarchy, mediating biological vulnerability of schizotypy to schizophrenia.

8.
Nat Commun ; 14(1): 7133, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932259

RESUMO

Sleep health is both conceptually and operationally a composite concept containing multiple domains of sleep. In line with this, high dependence and interaction across different domains of sleep health encourage a transition in sleep health research from categorical to dimensional approaches that integrate neuroscience and sleep health. Here, we seek to identify the covariance patterns between multiple sleep health domains and distributed intrinsic functional connectivity by applying a multivariate approach (partial least squares). This multivariate analysis reveals a composite sleep health dimension co-varying with connectivity patterns involving the attentional and thalamic networks and which appear relevant at the neuromolecular level. These findings are further replicated and generalized to several unseen independent datasets. Critically, the identified sleep-health related connectome shows diagnostic potential for insomnia disorder. These results together delineate a potential brain connectome biomarker for sleep health with high potential for clinical translation.


Assuntos
Conectoma , Distúrbios do Início e da Manutenção do Sono , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo , Sono , Conectoma/métodos
9.
Brain Res Bull ; 202: 110744, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37591404

RESUMO

Given a multitude of genetic and environmental factors, when investigating the variability in schizophrenia (SCZ) and the first-degree relatives (R-SCZ), latent disease-specific variation is usually hidden. To reliably investigate the mechanism underlying the brain deficits from the aspect of functional networks, we newly iterated a framework of contrastive variational autoencoders (cVAEs) applied in the contrasts among three groups, to disentangle the latent resting-state network patterns specified for the SCZ and R-SCZ. We demonstrated that the comparison in reconstructed resting-state networks among SCZ, R-SCZ, and healthy controls (HC) revealed network distortions of the inner-frontal hypoconnectivity and frontal-occipital hyperconnectivity, while the original ones illustrated no differences. And only the classification by adopting the reconstructed network metrics achieved satisfying performances, as the highest accuracy of 96.80% ± 2.87%, along with the precision of 95.05% ± 4.28%, recall of 98.18% ± 3.83%, and F1-score of 96.51% ± 2.83%, was obtained. These findings consistently verified the validity of the newly proposed framework for the contrasts among the three groups and provided related resting-state network evidence for illustrating the pathological mechanism underlying the brain deficits in SCZ, as well as facilitating the diagnosis of SCZ.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/genética , Imageamento por Ressonância Magnética/métodos , Encéfalo , Aprendizado de Máquina , Eletroencefalografia
10.
Sheng Li Xue Bao ; 75(4): 575-586, 2023 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-37583045

RESUMO

Obstructive sleep apnea syndrome (OSAS), a prevalent sleep disorder in children, is characterized by recurring upper airway obstruction during sleep. OSAS in children can cause intermittent hypoxia and sleep fragmentation, ultimately affect brain development and further lead to cognitive impairment if lack of timely effective intervention. In recent years, magnetic resonance imaging (MRI) and electroencephalogram (EEG) have been employed to investigate brain structure and function abnormalities in children with OSAS. Previous studies have indicated that children with OSAS showed extensive gray and white matter damage, abnormal brain function in regions such as the frontal lobe and hippocampus, as well as a significant decline in general cognitive function and executive function. However, the existing studies mainly focused on the regional activity, and the mechanism of pediatric OSAS affecting brain networks remains unknown. Moreover, it's unclear whether the alterations in brain structure and function are associated with their cognitive impairment. In this review article, we proposed two future research directions: 1) future studies should utilize the multimodal neuroimaging techniques to reveal the alterations of brain networks organization underlying pediatric OSAS; 2) further investigation is necessary to explore the relationship between brain network alteration and cognitive dysfunction in children with OSAS. With these efforts, it will be promising to identify the neuroimaging biomarkers for monitoring the brain development of children with OSAS as well as aiding its clinical diagnosis, and ultimately develop more effective strategies for intervention, diagnosis, and treatment.


Assuntos
Apneia Obstrutiva do Sono , Humanos , Criança , Apneia Obstrutiva do Sono/complicações , Cognição , Hipóxia/complicações , Hipocampo , Lobo Frontal
11.
Schizophr Bull ; 49(6): 1554-1567, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37607339

RESUMO

BACKGROUND AND HYPOTHESIS: Schizophrenia is a multidimensional disease. This study proposes a new research framework that combines multimodal meta-analysis and genetic/molecular architecture to solve the consistency in neuroimaging biomarkers of schizophrenia and whether these link to molecular genetics. STUDY DESIGN: We systematically searched Web of Science, PubMed, and BrainMap for the amplitude of low-frequency fluctuations (ALFF) or fractional ALFF, regional homogeneity, regional cerebral blood flow, and voxel-based morphometry analysis studies investigating schizophrenia. The pooled-modality, single-modality, and illness duration-dependent meta-analyses were performed using the activation likelihood estimation algorithm. Subsequently, Spearman correlation and partial least squares regression analyses were conducted to assess the relationship between identified reliable convergent patterns of multimodality and neurotransmitter/transcriptome, using prior molecular imaging and brain-wide gene expression. STUDY RESULTS: In total, 203 experiments comprising 10 613 patients and 10 461 healthy controls were included. Multimodal meta-analysis showed that brain regions of significant convergence in schizophrenia were mainly distributed in the frontotemporal cortex, anterior cingulate cortex, insula, thalamus, striatum, and hippocampus. Interestingly, the analyses of illness-duration subgroups identified aberrant functional and structural evolutionary patterns: Lines from the striatum to the cortical core networks to extensive cortical and subcortical regions. Subsequently, we found that these robust multimodal neuroimaging abnormalities were associated with multiple neurobiological abnormalities, such as dopaminergic, glutamatergic, serotonergic, and GABAergic systems. CONCLUSIONS: This work links transcriptome/neurotransmitters with reliable structural and functional signatures of brain abnormalities underlying disease effects in schizophrenia, which provides novel insight into the understanding of schizophrenia pathophysiology and targeted treatments.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Imageamento por Ressonância Magnética/métodos , Transcriptoma , Encéfalo , Neuroimagem
12.
Cereb Cortex ; 33(13): 8368-8381, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37032621

RESUMO

The univariate obesity-brain associations have been extensively explored, while little is known about the multivariate associations between obesity and resting-state functional connectivity. We therefore utilized machine learning and resting-state functional connectivity to develop and validate predictive models of 4 obesity phenotypes (i.e. body fat percentage, body mass index, waist circumference, and waist-height ratio) in 3 large neuroimaging datasets (n = 2,992). Preliminary evidence suggested that the resting-state functional connectomes effectively predicted obesity/weight status defined by each obesity phenotype with good generalizability to longitudinal and independent datasets. However, the differences between resting-state functional connectivity patterns characterizing different obesity phenotypes indicated that the obesity-brain associations varied according to the type of measure of obesity. The shared structure among resting-state functional connectivity patterns revealed reproducible neuroimaging biomarkers of obesity, primarily comprising the connectomes within the visual cortex and between the visual cortex and inferior parietal lobule, visual cortex and orbital gyrus, and amygdala and orbital gyrus, which further suggested that the dysfunctions in the perception, attention and value encoding of visual information (e.g. visual food cues) and abnormalities in the reward circuit may act as crucial neurobiological bases of obesity. The recruitment of multiple obesity phenotypes is indispensable in future studies seeking reproducible obesity-brain associations.


Assuntos
Conectoma , Humanos , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Fenótipo , Obesidade/diagnóstico por imagem
13.
bioRxiv ; 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36993290

RESUMO

The hubs of the intra-grey matter (GM) network were sensitive to anatomical distance and susceptible to neuropathological damage. However, few studies examined the hubs of cross-tissue distance-dependent networks and their changes in Alzheimer's disease (AD). Using resting-state fMRI data of 30 AD patients and 37 normal older adults (NC), we constructed the cross-tissue networks based on functional connectivity (FC) between GM and white matter (WM) voxels. In the full-ranged and distance-dependent networks (characterized by gradually increased Euclidean distances between GM and WM voxels), their hubs were identified with weight degree metrics (frWD and ddWD). We compared these WD metrics between AD and NC; using the resultant abnormal WDs as the seeds, we performed seed-based FC analysis. With increasing distance, the GM hubs of distance-dependent networks moved from the medial to lateral cortices, and the WM hubs spread from the projection fibers to longitudinal fascicles. Abnormal ddWD metrics in AD were primarily located in the hubs of distance-dependent networks around 20-100mm. Decreased ddWDs were located in the left corona radiation (CR), which had decreased FCs with the executive network's GM regions in AD. Increased ddWDs were located in the posterior thalamic radiation (PTR) and the temporal-parietal-occipital junction (TPO), and their FCs were larger in AD. Increased ddWDs were shown in the sagittal striatum, which had larger FCs with the salience network's GM regions in AD. The reconfiguration of cross-tissue distance-dependent networks possibly reflected the disruption in the neural circuit of executive function and the compensatory changes in the neural circuits of visuospatial and social-emotional functions in AD.

14.
Cereb Cortex ; 33(11): 7163-7174, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36748995

RESUMO

Delay discounting (DD) refers to a phenomenon that humans tend to choose small-sooner over large-later rewards during intertemporal choices. Steep discounting of delayed outcome is related to a variety of maladaptive behaviors and is considered as a transdiagnostic process across psychiatric disorders. Previous studies have investigated the association between brain structure (e.g. gray matter volume) and DD; however, it is unclear whether the intracortical myelin (ICM) influences DD. Here, based on a sample of 951 healthy young adults drawn from the Human Connectome Project, we examined the relationship between ICM, which was measured by the contrast of T1w and T2w images, and DD and further tested whether the identified associations were mediated by the regional homogeneity (ReHo) of brain spontaneous activity. Vertex-wise regression analyses revealed that steeper DD was significantly associated with lower ICM in the left temporoparietal junction (TPJ) and right middle-posterior cingulate cortex. Region-of-interest analysis revealed that the ReHo values in the left TPJ partially mediated the association of its myelin content with DD. Our findings provide the first evidence that cortical myelination is linked with individual differences in decision impulsivity and suggest that the myelin content affects cognitive performances partially through altered local brain synchrony.


Assuntos
Imageamento por Ressonância Magnética , Bainha de Mielina , Adulto Jovem , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Comportamento Impulsivo , Substância Cinzenta/diagnóstico por imagem
15.
Cereb Cortex ; 33(11): 7015-7025, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36749000

RESUMO

Normal sleepers may be at risk for insomnia during COVID-19. Identifying psychological factors and neural markers that predict their insomnia risk, as well as investigating possible courses of insomnia development, could lead to more precise targeted interventions for insomnia during similar public health emergencies. Insomnia severity index of 306 participants before and during COVID-19 were employed to determine the development of insomnia, while pre-COVID-19 psychometric and resting-state fMRI data were used to explore corresponding psychological and neural markers of insomnia development. Normal sleepers as a group reported a significant increase in insomnia symptoms after COVID-19 outbreak (F = 4.618, P = 0.0102, df = 2, 609.9). Depression was found to significantly contribute to worse insomnia (ß = 0.066, P = 0.024). Subsequent analysis found that functional connectivity between the precentral gyrus and middle/inferior temporal gyrus mediated the association between pre-COVID-19 depression and insomnia symptoms during COVID-19. Cluster analysis identified that postoutbreak insomnia symptoms followed 3 courses (lessened, slightly worsened, and developed into mild insomnia), and pre-COVID-19 depression symptoms and functional connectivities predicted these courses. Timely identification and treatment of at-risk individuals may help avoid the development of insomnia in the face of future health-care emergencies, such as those arising from COVID-19 variants.


Assuntos
COVID-19 , Distúrbios do Início e da Manutenção do Sono , Humanos , Distúrbios do Início e da Manutenção do Sono/diagnóstico por imagem , Distúrbios do Início e da Manutenção do Sono/epidemiologia , COVID-19/complicações , Depressão/diagnóstico por imagem , Emergências , SARS-CoV-2 , Encéfalo/diagnóstico por imagem
16.
Neurobiol Stress ; 22: 100511, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36632310

RESUMO

Perceived stress, which refers to people's evaluation of a stressful event and their ability to cope with it, has emerged as a stable predictor for physical and mental health outcomes. Increasing evidence has suggested the buffering effect of social support on perceived stress. Although previous studies have investigated the brain structural features (e.g., gray matter volume) associated with perceived stress, less is known about the association between perceived chronic stress and intra-cortical myelin (ICM), which is an important microstructure of brain and is essential for healthy brain functions, and the role of social support in this association. Using a sample of 1076 healthy young adults drawn from the Human Connectome Project, we quantified the ICMby the contrast of T1w and T2w images and examined its association with perceived chronic stress during the last month and social support. Behavioral results showed that perceived chronic stress was negatively associated with both emotional support and instrumental support. Vertex-wise multiple regression analyses revealed that higher level of perceived chronic stress was significantly associated with lower ICM content of a cluster in the right supramarginal gyrus (rSMG). Interestingly, the emotional support, but not the instrumental support, significantly mediated the association of perceived chronic stress with ICM in the rSMG. Overall, the present study provides novel evidence for the cortical myelination of perceived chronic stress in humans and highlights the essential role of the rSMG in perceived chronic stress and emotional support.

17.
Cereb Cortex ; 33(8): 4794-4805, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36300597

RESUMO

Childhood obesity is associated with alterations in brain structure. Previous studies generally used a single structural index to characterize the relationship between body mass index(BMI) and brain structure, which could not describe the alterations of structural covariance between brain regions. To cover this research gap, this study utilized two independent datasets with brain structure profiles and BMI of 155 school-aged children. Connectome-based predictive modeling(CPM) was used to explore whether children's BMI is reliably predictable by the novel individualized morphometric similarity network(MSN). We revealed the MSN can predict the BMI in school-age children with good generalizability to unseen dataset. Moreover, these revealed significant brain structure covariant networks can further predict children's food approach behavior. The positive predictive networks mainly incorporated connections between the frontoparietal network(FPN) and the visual network(VN), between the FPN and the limbic network(LN), between the default mode network(DMN) and the LN. The negative predictive network primarily incorporated connections between the FPN and DMN. These results suggested that the incomplete integration of the high-order brain networks and the decreased dedifferentiation of the high-order networks to the primary reward networks can be considered as a core structural basis of the imbalance between inhibitory control and reward processing in childhood obesity.


Assuntos
Conectoma , Obesidade Infantil , Humanos , Criança , Índice de Massa Corporal , Encéfalo/diagnóstico por imagem , Alimentos , Imageamento por Ressonância Magnética
18.
Psychol Med ; 53(3): 771-784, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34100349

RESUMO

BACKGROUND: Schizophrenia has been primarily conceptualized as a disorder of high-order cognitive functions with deficits in executive brain regions. Yet due to the increasing reports of early sensory processing deficit, recent models focus more on the developmental effects of impaired sensory process on high-order functions. The present study examined whether this pathological interaction relates to an overarching system-level imbalance, specifically a disruption in macroscale hierarchy affecting integration and segregation of unimodal and transmodal networks. METHODS: We applied a novel combination of connectome gradient and stepwise connectivity analysis to resting-state fMRI to characterize the sensorimotor-to-transmodal cortical hierarchy organization (96 patients v. 122 controls). RESULTS: We demonstrated compression of the cortical hierarchy organization in schizophrenia, with a prominent compression from the sensorimotor region and a less prominent compression from the frontal-parietal region, resulting in a diminished separation between sensory and fronto-parietal cognitive systems. Further analyses suggested reduced differentiation related to atypical functional connectome transition from unimodal to transmodal brain areas. Specifically, we found hypo-connectivity within unimodal regions and hyper-connectivity between unimodal regions and fronto-parietal and ventral attention regions along the classical sensation-to-cognition continuum (voxel-level corrected, p < 0.05). CONCLUSIONS: The compression of cortical hierarchy organization represents a novel and integrative system-level substrate underlying the pathological interaction of early sensory and cognitive function in schizophrenia. This abnormal cortical hierarchy organization suggests cascading impairments from the disruption of the somatosensory-motor system and inefficient integration of bottom-up sensory information with attentional demands and executive control processes partially account for high-level cognitive deficits characteristic of schizophrenia.


Assuntos
Conectoma , Esquizofrenia , Córtex Sensório-Motor , Humanos , Esquizofrenia/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Cognição , Função Executiva , Sensação , Córtex Sensório-Motor/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem
19.
Psychol Med ; 53(12): 5786-5799, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36177890

RESUMO

BACKGROUND: Despite increasing knowledge on the neuroimaging patterns of eating disorder (ED) symptoms in non-clinical populations, studies using whole-brain machine learning to identify connectome-based neuromarkers of ED symptomatology are absent. This study examined the association of connectivity within and between large-scale functional networks with specific symptomatic behaviors and cognitions using connectome-based predictive modeling (CPM). METHODS: CPM with ten-fold cross-validation was carried out to probe functional networks that were predictive of ED-associated symptomatology, including body image concerns, binge eating, and compensatory behaviors, within the discovery sample of 660 participants. The predictive ability of the identified networks was validated using an independent sample of 821 participants. RESULTS: The connectivity predictive of body image concerns was identified within and between networks implicated in cognitive control (frontoparietal and medial frontal), reward sensitivity (subcortical), and visual perception (visual). Crucially, the set of connections in the positive network related to body image concerns identified in one sample was generalized to predict body image concerns in an independent sample, suggesting the replicability of this effect. CONCLUSIONS: These findings point to the feasibility of using the functional connectome to predict ED symptomatology in the general population and provide the first evidence that functional interplay among distributed networks predicts body shape/weight concerns.


Assuntos
Transtorno da Compulsão Alimentar , Conectoma , Humanos , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Cognição , Transtorno da Compulsão Alimentar/psicologia
20.
Front Psychiatry ; 13: 993866, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36226106

RESUMO

"Cognitive dysmetria" theory of schizophrenia (SZ) has highlighted that the cerebellum plays a critical role in understanding the pathogenesis and cognitive impairment in SZ. Despite some studies have reported the structural disruption of the cerebellum in SZ using whole brain approach, specific focus on the voxel-wise changes of cerebellar WM microstructure and its associations with cognition impairments in SZ were less investigated. To further explore the voxel-wise structural disruption of the cerebellum in SZ, the present study comprehensively examined volume and diffusion features of cerebellar white matter in SZ at the voxel level (42 SZ vs. 52 controls) and correlated the observed alterations with the cognitive impairments measured by MATRICS Consensus Cognitive Battery. Combing voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) methods, we found, compared to healthy controls (HCs), SZ patients did not show significant alteration in voxel-level cerebellar white matter (WM) volume and tract-wise and skeletonized DTI features. In voxel-wise DTI features of cerebellar peduncles, compared to HCs, SZ patients showed decreased fractional anisotropy and increased radial diffusivity mainly located in left middle cerebellar peduncles (MCP) and inferior cerebellar peduncles (ICP). Interestingly, these alterations were correlated with overall composite and different cognitive domain (including processing speed, working memory, and attention vigilance) in HCs but not in SZ patients. The present findings suggested that the voxel-wise WM integrity analysis might be a more sensitive way to investigate the cerebellar structural abnormalities in SZ patients. Correlation results suggested that inferior and MCP may be a crucial neurobiological substrate of cognition impairments in SZ, thus adding the evidence for taking the cerebellum as a novel therapeutic target for cognitive impairments in SZ patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA