Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38870029

RESUMO

Leigh syndrome is the most common inherited mitochondrial disease in children and is often fatal within the first few years of life. In 2020, mutations in the gene encoding sulfide:quinone oxidoreductase (SQOR), a mitochondrial protein, were identified as a cause of Leigh syndrome. Here, we report that mice with a mutation in the gene encoding SQOR (SqorΔN/ΔN mice), which prevented SQOR from entering mitochondria, had clinical and pathological manifestations of Leigh syndrome. SqorΔN/ΔN mice had increased blood lactate levels that were associated with markedly decreased complex IV activity and increased hydrogens sulfide (H2S) levels. Because H2S is produced by both gut microbiota and host tissue, we tested whether metronidazole (a broad-spectrum antibiotic) or a sulfur-restricted diet rescues SqorΔN/ΔN mice from developing Leigh syndrome. Daily treatment with metronidazole alleviated increased H2S levels, normalized complex IV activity and blood lactate levels, and prolonged the survival of SqorΔN/ΔN mice. Similarly, a sulfur-restricted diet normalized blood lactate levels and inhibited the development of Leigh syndrome. Taken together, these observations suggest that mitochondrial SQOR is essential to prevent systemic accumulation of H2S. Administration of metronidazole or a sulfur-restricted diet may be therapeutic approaches to treatment of patients with Leigh syndrome caused by mutations in SQOR.

2.
Metabolites ; 13(9)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37755265

RESUMO

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that plays an important role in gastrointestinal barrier function, tumorigenesis, and is an emerging drug target. The resident microbiota is capable of metabolizing tryptophan to metabolites that are AHR ligands (e.g., indole-3-acetate). Recently, a novel set of mutagenic tryptophan metabolites named indolimines have been identified that are produced by M. morganii in the gastrointestinal tract. Here, we determined that indolimine-200, -214, and -248 are direct AHR ligands that can induce Cyp1a1 transcription and subsequent CYP1A1 enzymatic activity capable of metabolizing the carcinogen benzo(a)pyrene in microsomal assays. In addition, indolimines enhance IL6 expression in a colonic tumor cell line in combination with cytokine treatment. The concentration of indolimine-248 that induces AHR transcriptional activity failed to increase DNA damage. These observations reveal an additional aspect of how indolimines may alter colonic tumorigenesis beyond mutagenic activity.

3.
Int J Tryptophan Res ; 16: 11786469231182508, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37434789

RESUMO

The aryl hydrocarbon receptor (AHR) exerts major roles in xenobiotic metabolism, and in immune and barrier tissue homeostasis. How AHR activity is regulated by the availability of endogenous ligands is poorly understood. Potent AHR ligands have been shown to exhibit a negative feedback loop through induction of CYP1A1, leading to metabolism of the ligand. Our recent study identified and quantified 6 tryptophan metabolites (eg, indole-3-propionic acid, and indole-3-acetic acid) in mouse and human serum, generated by the host and gut microbiome, that are present in sufficient concentrations to individually activate the AHR. Here, these metabolites are not significantly metabolized by CYP1A1/1B1 in an in vitro metabolism assay. In contrast, CYP1A1/1B metabolizes the potent endogenous AHR ligand 6-formylindolo[3,2b]carbazole. Furthermore, molecular modeling of these 6 AHR activating tryptophan metabolites within the active site of CYP1A1/1B1 reveal metabolically unfavorable docking profiles with regard to orientation with the catalytic heme center. In contrast, docking studies confirmed that 6-formylindolo[3,2b]carbazole would be a potent substrate. The lack of CYP1A1 expression in mice fails to influence serum levels of the tryptophan metabolites examined. In addition, marked induction of CYP1A1 by PCB126 exposure in mice failed to alter the serum concentrations of these tryptophan metabolites. These results suggest that certain circulating tryptophan metabolites are not susceptible to an AHR negative feedback loop and are likely important factors that mediate constitutive but low level systemic human AHR activity.

4.
Int J Tryptophan Res ; 16: 11786469231182510, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441265

RESUMO

The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor that plays an integral role in homeostatic maintenance by regulating cellular functions such as cellular differentiation, metabolism, barrier function, and immune response. An important but poorly understood class of AHR activators are compounds derived from host and bacterial metabolism of tryptophan. The commensal bacteria of the gut microbiome are major producers of tryptophan metabolites known to activate the AHR, while the host also produces AHR activators through tryptophan metabolism. We used targeted mass spectrometry-based metabolite profiling to determine the presence and metabolic source of these metabolites in the sera of conventional mice, germ-free mice, and humans. Surprisingly, sera concentrations of many tryptophan metabolites are comparable between germ-free and conventional mice. Therefore, many major AHR-activating tryptophan metabolites in mouse sera are produced by the host, despite their presence in feces and mouse cecal contents. Here we present an investigation of AHR activation using a complex mixture of tryptophan metabolites to examine the biological relevance of circulating tryptophan metabolites. AHR activation is rarely studied in the context of a mixture at relevant concentrations, as we present here. The AHR activation potentials of individual and pooled metabolites were explored using cell-based assays, while ligand binding competition assays and ligand docking simulations were used to assess the detected metabolites as AHR agonists. The physiological and biomedical relevance of the identified metabolites was investigated in the context of a cell-based model for rheumatoid arthritis. We present data that reframe AHR biology to include the presence of a mixture of ubiquitous tryptophan metabolites, improving our understanding of homeostatic AHR activity and models of AHR-linked diseases.

5.
FASEB J ; 37(7): e23010, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37272852

RESUMO

The aryl hydrocarbon receptor (AHR) mediates intestinal barrier homeostasis. Many AHR ligands are also CYP1A1/1B1 substrates, which can result in rapid clearance within the intestinal tract, limiting systemic exposure and subsequent AHR activation. This led us to the hypothesis that there are dietary substrates of CYP1A1/1B1 that functionally increase the half-life of potent AHR ligands. We examined the potential of urolithin A (UroA), a gut bacterial metabolite of ellagitannins, as a CYP1A1/1B1 substrate to enhance AHR activity in vivo. UroA is a competitive substrate for CYP1A1/1B1 in an in vitro competition assay. A broccoli-containing diet promotes the gastric formation of the potent hydrophobic AHR ligand and CYP1A1/1B1 substrate, 5,11-dihydroindolo[3,2-b]carbazole (ICZ). In mice, dietary exposure to UroA in a 10% broccoli diet led to a coordinated increase in duodenal, cardiac, and pulmonary AHR activity, but no increase in activity in the liver. Thus, CYP1A1 dietary competitive substrates can lead to enhanced systemic AHR ligand distribution from the gut, likely through the lymphatic system, increasing AHR activation in key barrier tissues. Finally, this report will lead to a reassessment of the dynamics of distribution of other hydrophobic chemicals present in the diet.


Assuntos
Citocromo P-450 CYP1A1 , Trato Gastrointestinal , Pulmão , Receptores de Hidrocarboneto Arílico , Animais , Camundongos , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Ligantes , Fígado/metabolismo , Pulmão/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Dieta , Trato Gastrointestinal/metabolismo
6.
bioRxiv ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36865156

RESUMO

The aryl hydrocarbon receptor (AHR) mediates intestinal barrier homeostasis. Many AHR ligands are also CYP1A1/1B1 substrates, which can result in the rapid clearance within the intestinal tract, limiting AHR activation. This led us to the hypothesis that there are dietary substrates of CYP1A1/1B1 that increase the half-life of potent AHR ligands. We examined the potential of urolithin A (UroA) as a CYP1A1/1B1 substrate to enhance AHR activity in vivo. UroA is a competitive substrate for CYP1A1/1B1 in an in vitro competition assay. A broccoli-containing diet promotes the gastric formation of the potent hydrophobic AHR ligand and CYP1A1/1B1 substrate, 5,11-dihydroindolo[3,2-b]carbazole (ICZ). Dietary exposure to UroA in a broccoli diet led to a coordinated increase in duodenal, cardiac, and pulmonary AHR activity, but no increase in activity in liver. Thus, CYP1A1 dietary competitive substrates can lead to intestinal escape, likely through the lymphatic system, increasing AHR activation in key barrier tissues.

7.
bioRxiv ; 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36747842

RESUMO

The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor that plays an integral role in homeostatic maintenance by regulating cellular functions such as cellular differentiation, metabolism, barrier function, and immune response. An important but poorly understood class of AHR activators are compounds derived from host and bacterial metabolism of tryptophan. The commensal bacteria of the gut microbiome are major producers of tryptophan metabolites known to activate the AHR, while the host also produces AHR activators through tryptophan metabolism. We used targeted mass spectrometry-based metabolite profiling to determine the presence and metabolic source of these metabolites in the sera of conventional mice, germ-free mice, and humans. Surprisingly, sera concentrations of many tryptophan metabolites are comparable between germ-free and conventional mice. Therefore, many major AHR-activating tryptophan metabolites in mouse sera are produced by the host, despite their presence in feces and mouse cecal contents. AHR activation is rarely studied in the context of a mixture at relevant concentrations, as we present here. The AHR activation potentials of individual and pooled metabolites were explored using cell-based assays, while ligand binding competition assays and ligand docking simulations were used to assess the detected metabolites as AHR agonists. The physiological and biomedical relevance of the identified metabolites was investigated in the context of cell-based models for cancer and rheumatoid arthritis. We present data here that reframe AHR biology to include the presence of ubiquitous tryptophan metabolites, improving our understanding of homeostatic AHR activity and models of AHR-linked diseases.

8.
Gut Microbes ; 12(1): 1859812, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33382356

RESUMO

Increasing evidence suggests a significant role for microbiota dependent metabolites and co-metabolites, acting as aryl hydrocarbon receptor (AHR) ligands, to facilitate bidirectional communication between the host and the microbiota and thus modulate physiology. Such communication is particularly evident within the gastrointestinal tract. Through binding to or activating the AHR, these metabolites play fundamental roles in various physiological processes and likely contribute to the maintenance of intestinal homeostasis. In recent years, tryptophan metabolites were screened to identify physiologically relevant AHR ligands or activators. The discovery of specific microbiota-derived indole-based metabolites as AHR ligands may provide insight concerning how these metabolites affect interactions between gut microbiota and host intestinal homeostasis and how this relates to chronic GI disease and overall health. A greater understanding of the mechanisms that modulate the production of such metabolites and associated AHR activity may be utilized to effectively treat inflammatory diseases and promote human health. Here, we review microbiota-derived AHR ligands generated from tryptophan that modulate host-gut microbiota interactions and discuss possible intervention strategies for potential therapies in the future.


Assuntos
Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/metabolismo , Animais , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Humanos , Receptores de Hidrocarboneto Arílico/genética
9.
Gut Microbes ; 12(1): 1-24, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32783770

RESUMO

Commensal microbiota-dependent tryptophan catabolism within the gastrointestinal tract is known to exert profound effects upon host physiology, including the maintenance of epithelial barrier and immune function. A number of abundant microbiota-derived tryptophan metabolites exhibit activation potential for the aryl hydrocarbon receptor (AHR). Gene expression facilitated by AHR activation through the presence of dietary or microbiota-generated metabolites can influence gastrointestinal homeostasis and confer protection from intestinal challenges. Utilizing untargeted mass spectrometry-based metabolomics profiling, combined with AHR activity screening assays, we identify four previously unrecognized tryptophan metabolites, present in mouse cecal contents and human stool, with the capacity to activate AHR. Using GC/MS and LC/MS platforms, quantification of these novel AHR activators, along with previously established AHR-activating tryptophan metabolites, was achieved, providing a relative order of abundance. Using physiologically relevant concentrations and quantitative gene expression analyses, the relative efficacy of these tryptophan metabolites with regard to mouse or human AHR activation potential is examined. These data reveal indole, 2-oxindole, indole-3-acetic acid and kynurenic acid as the dominant AHR activators in mouse cecal contents and human stool from participants on a controlled diet. Here we provide the first documentation of the relative abundance and AHR activation potential of a panel of microbiota-derived tryptophan metabolites. Furthermore, these data reveal the human AHR to be more sensitive, at physiologically relevant concentrations, to tryptophan metabolite activation than mouse AHR. Additionally, correlation analyses indicate a relationship linking major tryptophan metabolite abundance with AHR activity, suggesting these cecal/fecal metabolites represent biomarkers of intestinal AHR activity.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Microbioma Gastrointestinal , Trato Gastrointestinal/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/metabolismo , Animais , Ceco/química , Dieta , Fezes/química , Trato Gastrointestinal/microbiologia , Humanos , Ácidos Indolacéticos/análise , Ácidos Indolacéticos/metabolismo , Indóis/análise , Indóis/metabolismo , Ácido Cinurênico/análise , Ácido Cinurênico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
10.
Sci Rep ; 10(1): 866, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964941

RESUMO

Proton pump inhibitors (PPIs) are used for the long-term treatment of gastroesophageal disorders and the non-prescription medicines for acid reflux. However, there is growing concerns about PPI misuse, overuse and abuse. This study aimed to develop an animal model to examine the effects of long-term use of PPI in vivo. Twenty one Wistar rats were given omeprazole orally or intravenously for 30 days, and caerulein as a positive control. After euthanization, the serum and stool were collected to perform MS-based quantitative analysis of metabolites. We carried out 16S-based profiling of fecal microbiota, assessed the expression of bile acid metabolism regulators and examined the immunopathological characteristics of bile ducts. After long-term PPI exposure, the fecal microbial profile was altered and showed similarity to those observed in high-fat diet studies. The concentrations of several metabolites were also changed in various specimens. Surprisingly, morphological changes were observed in the bile duct, including ductal epithelial proliferation, micropapillary growth of biliary epithelium, focal bile duct stricture formation and bile duct obstruction. These are characteristics of precancerous lesions of bile duct. FXR and RXRα expressions were significantly reduced, which were similar to that observed in cholangiocarcinoma in TCGA and Oncomine databases. We established a novel animal model to examine the effects of long-term use of omeprazole. The gut microbes and metabolic change are consequences of long-term PPI exposure. And the results showed the environment in vivo tends to a high-fat diet. More importantly, we observed biliary epithelial hyperplasia, which is an indicator of a high-fat diet.


Assuntos
Ductos Biliares/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Omeprazol/efeitos adversos , Inibidores da Bomba de Prótons/efeitos adversos , Administração Oral , Animais , Neoplasias dos Ductos Biliares/genética , Ductos Biliares/patologia , Transformação Celular Neoplásica/efeitos dos fármacos , Colangiocarcinoma/genética , Colestase/induzido quimicamente , Colestase/patologia , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Omeprazol/administração & dosagem , Omeprazol/farmacologia , Inibidores da Bomba de Prótons/administração & dosagem , Inibidores da Bomba de Prótons/farmacologia , RNA Ribossômico 16S , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ratos Wistar , Receptor X Retinoide alfa/genética , Receptor X Retinoide alfa/metabolismo , Tirosina/sangue , alfa-Tocoferol/sangue
11.
Toxicol Sci ; 171(1): 146-158, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31225620

RESUMO

The aryl hydrocarbon receptor (AHR) mediates 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced toxicity that can lead to chloracne in humans. A characteristic of chloracne, in contrast to acne vulgaris, is shrinkage or loss of sebaceous glands. Acne vulgaris, on the other hand, is often accompanied by excessive sebum production. Here, we examined the role of AHR in lipid synthesis in human sebocytes using distinct classes of AHR ligands. Modulation of AHR activity attenuated the expression of lipogenic genes and key proinflammatory markers in the absence of canonical DRE-driven transcription of the AHR target gene CYP1A1. Furthermore, topical treatment with TCDD, which mediates DRE-dependent activity, and SGA360, which fails to induce DRE-mediated responses, both exhibited a decrease in the size of sebaceous glands and the number of sebocytes within each gland in the skin. To elucidate the mechanism of AHR-mediated repression of lipid synthesis, we demonstrated that selective AHR modulators, SGA360 and SGA315 increased the protein turnover of the mature sterol regulatory element-binding protein (mSREBP-1), the principal transcriptional regulator of the fatty acid synthesis pathway. Interestingly, selective AHR ligand treatment significantly activated the AMPK-dependent kinase (AMPK) in sebocytes. Moreover, we demonstrated an inverse correlation between the active AMPK and the mSREBP-1 protein, which is consistent with the previously reported role of AMPK in inhibiting cleavage of SREBP-1. Overall, our findings indicate a DRE-independent function of selective AHR ligands in modulating lipid synthesis in human sebocytes, which might raise the possibility of using AHR as a therapeutic target for treatment of acne.

12.
J Proteome Res ; 18(4): 1715-1724, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30777439

RESUMO

The aryl hydrocarbon receptor (AHR) is a major regulator of immune function within the gastrointestinal tract. Resident microbiota are capable of influencing AHR-dependent signaling pathways via production of an array of bioactive molecules that act as AHR agonists, such as indole or indole-3-aldehyde. Bacteria produce a number of quinoline derivatives, of which some function as quorum-sensing molecules. Thus, we screened relevant hydroxyquinoline derivatives for AHR activity using AHR responsive reporter cell lines. 2,8-Dihydroxyquinoline (2,8-DHQ) was identified as a species-specific AHR agonist that exhibits full AHR agonist activity in human cell lines, but only induces modest AHR activity in mouse cells. Additional dihydroxylated quinolines tested failed to activate the human AHR. Nanomolar concentrations of 2,8-DHQ significantly induced CYP1A1 expression and, upon cotreatment with cytokines, synergistically induced IL6 expression. Ligand binding competition studies subsequently confirmed 2,8-DHQ to be a human AHR ligand. Several dihydroxyquinolines were detected in human fecal samples, with concentrations of 2,8-DHQ ranging between 0 and 3.4 pmol/mg feces. Additionally, in mice the microbiota was necessary for the presence of DHQ in cecal contents. These results suggest that microbiota-derived 2,8-DHQ would contribute to AHR activation in the human gut, and thus participate in the protective and homeostatic effects observed with gastrointestinal AHR activation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/agonistas , Microbioma Gastrointestinal/fisiologia , Oxiquinolina/análogos & derivados , Receptores de Hidrocarboneto Arílico/agonistas , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células CACO-2 , Fezes/microbiologia , Humanos , Camundongos , Oxiquinolina/metabolismo , Oxiquinolina/farmacologia , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/metabolismo
13.
Anal Chem ; 89(10): 5565-5577, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28437060

RESUMO

The ability to identify and quantify small molecule metabolites derived from gut microbial-mammalian cometabolism is essential for the understanding of the distinct metabolic functions of the microbiome. To date, analytical protocols that quantitatively measure a complete panel of microbial metabolites in biological samples have not been established but are urgently needed by the microbiome research community. Here, we report an automated high-throughput quantitative method using a gas chromatography/time-of-flight mass spectrometry (GC/TOFMS) platform to simultaneously measure over one hundred microbial metabolites in human serum, urine, feces, and Escherichia coli cell samples within 15 min per sample. A reference library was developed consisting of 145 methyl and ethyl chloroformate (MCF and ECF) derivatized compounds with their mass spectral and retention index information for metabolite identification. These compounds encompass different chemical classes including fatty acids, amino acids, carboxylic acids, hydroxylic acids, and phenolic acids as well as benzoyl and phenyl derivatives, indoles, etc., that are involved in a number of important metabolic pathways. Within an optimized range of concentrations and sample volumes, most derivatives of both reference standards and endogenous metabolites in biological samples exhibited satisfactory linearity (R2 > 0.99), good intrabatch reproducibility, and acceptable stability within 6 days (RSD < 20%). This method was further validated by examination of the analytical variability of 76 paired human serum, urine, and fecal samples as well as quality control samples. Our method involved using high-throughput sample preparation, measurement with automated derivatization, and rapid GC/TOFMS analysis. Both techniques are well suited for microbiome metabolomics studies.


Assuntos
Escherichia coli/metabolismo , Formiatos/química , Ésteres do Ácido Fórmico/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metaboloma , Automação , Escherichia coli/química , Fezes/química , Humanos , Análise de Componente Principal , Reprodutibilidade dos Testes , Soro/química , Urina/química
14.
J Proteome Res ; 14(5): 2237-54, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25784267

RESUMO

Atherosclerosis resulting from hyperlipidemia causes many serious cardiovascular diseases. To understand the systems changes associated with pathogenesis and progression of atherosclerosis, we comprehensively analyzed the dynamic metabonomic changes in multiple biological matrices of LDLR(-/-) mice using NMR and GC-FID/MS with gene expression, clinical chemistry, and histopathological data as well. We found that 12 week "Western-type" diet (WD) treatment caused obvious aortic lesions, macrophage infiltration, and collagen level elevation in LDLR(-/-) mice accompanied by up-regulation of inflammatory factors including aortic ICAM-1, MCP-1, iNOS, MMP2, and hepatic TNFα and IL-1ß. The WD-induced atherosclerosis progression was accompanied by metabonomic changes in multiple matrices including biofluids (plasma, urine) and (liver, kidney, myocardial) tissues involving multiple metabolic pathways. These included disruption of cholesterol homeostasis, disturbance of biosynthesis of amino acids and proteins, altered gut microbiota functions together with metabolisms of vitamin-B3, choline, purines, and pyrimidines. WD treatment caused down-regulation of SCD1 and promoted oxidative stress reflected by urinary allantoin elevation and decreases in hepatic PUFA-to-MUFA ratio. When switching to normal diet, atherosclerotic LDLR(-/-) mice reprogrammed their metabolisms and reversed the atherosclerosis-associated metabonomic changes to a large extent, although aortic lesions, inflammation parameters, macrophage infiltration, and collagen content were only partially alleviated. We concluded that metabolisms of fatty acids and vitamin-B3 together with gut microbiota played crucially important roles in atherosclerosis development. These findings offered essential biochemistry details of the diet-induced atherosclerosis and demonstrated effectiveness of the integrated metabonomic analysis of multiple biological matrices for understanding the molecular aspects of cardiovascular diseases.


Assuntos
Aterosclerose/metabolismo , Hiperlipidemias/metabolismo , Metaboloma/genética , Metabolômica , Receptores de LDL/deficiência , Animais , Aorta/metabolismo , Aorta/patologia , Aterosclerose/etiologia , Aterosclerose/genética , Aterosclerose/patologia , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Hiperlipidemias/etiologia , Hiperlipidemias/genética , Hiperlipidemias/patologia , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Fígado/patologia , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo , Receptores de LDL/genética , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
15.
J Proteome Res ; 12(6): 2958-66, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23651354

RESUMO

The interplay between genetic mutation and environmental factors is believed to contribute to the etiology of inflammatory bowel disease (IBD). While focused attention has been paid to the aforementioned research, time-specific and organ-specific metabolic changes associated with IBD are still lacking. Here, we induced acute ulcerative colitis in mice by providing water containing 3% dextran sulfate sodium (DSS) for 7 days and investigated the metabolic changes of plasma, urine, and a range of biological tissues by employing a (1)H nuclear magnetic resonance (NMR)-based metabonomics approach with complementary information on serum clinical chemistry and histopathology. We found that DSS-induced acute ulcerative colitis leads to significant elevations in the levels of amino acids in plasma and decreased levels in the membrane-related metabolites and a range of nucleotides, nucleobases, and nucleosides in the colon. In addition, acute-colitis-induced elevations in the levels of nucleotides in the liver were observed, accompanied by reduced levels of glucose. DSS-induced acute colitis also resulted in increased levels of oxidized glutathione and attenuated levels of taurine in the spleen. Furthermore, acute colitis resulted in depletion in the levels of gut microbial cometabolites in urine along with an increase in citric acid cycle intermediates. These findings suggest that DSS-induced acute colitis causes a disturbance of lipid and energy metabolism, damage to the colon and liver, a promoted antioxidative and anti-inflammatory response, and perturbed gut microbiotal communities. The information obtained here provided details of the time-dependent and holistic metabolic changes in the development of the DSS-induced acute ulcerative colitis, which could be useful in discovery of novel therapeutic targets for management of IBD.


Assuntos
Colite Ulcerativa/sangue , Colite Ulcerativa/urina , Colo/metabolismo , Metabolômica , Doença Aguda , Aminoácidos/sangue , Animais , Ciclo do Ácido Cítrico/efeitos dos fármacos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Colo/efeitos dos fármacos , Colo/patologia , Sulfato de Dextrana/toxicidade , Glucose/metabolismo , Dissulfeto de Glutationa/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microbiota/efeitos dos fármacos , Nucleosídeos/metabolismo , Nucleotídeos/metabolismo , Baço/efeitos dos fármacos , Baço/metabolismo , Baço/patologia , Taurina/metabolismo
16.
PLoS One ; 7(11): e51060, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23226457

RESUMO

Bacteremia, the presence of viable bacteria in the blood stream, is often associated with several clinical conditions. Bacteremia can lead to multiple organ failure if managed incorrectly, which makes providing suitable nutritional support vital for reducing bacteremia-associated mortality. In order to provide such information, we investigated the metabolic consequences of a Klebsiella pneumoniae (K. pneumoniae) infection in vivo by employing a combination of (1)H nuclear magnetic resonance spectroscopy and multivariate data analysis. K. pneumoniae was intravenously infused in rats; urine and plasma samples were collected at different time intervals. We found that K. pneumoniae-induced bacteremia stimulated glycolysis and the tricarboxylic acid cycle and also promoted oxidation of fatty acids and creatine phosphate to facilitate the energy-demanding host response. In addition, K. pneumoniae bacteremia also induced anti-endotoxin, anti-inflammatory and anti-oxidization responses in the host. Furthermore, bacteremia could cause a disturbance in the gut microbiotal functions as suggested by alterations in a range of amines and bacteria-host co-metabolites. Our results suggest that supplementation with glucose and a high-fat and choline-rich diet could ameliorate the burdens associated with bacteremia. Our research provides underlying pathological processes of bacteremia and a better understanding of the clinical and biochemical manifestations of bacteremia.


Assuntos
Infecções por Klebsiella/metabolismo , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/fisiologia , Animais , Bacteriemia/sangue , Bacteriemia/metabolismo , Bacteriemia/microbiologia , Bacteriemia/urina , Proteína C-Reativa/metabolismo , Calcitonina/metabolismo , Contagem de Colônia Microbiana , Análise Discriminante , Modelos Animais de Doenças , Progressão da Doença , Feminino , Infecções por Klebsiella/sangue , Infecções por Klebsiella/urina , Klebsiella pneumoniae/crescimento & desenvolvimento , Análise dos Mínimos Quadrados , Contagem de Leucócitos , Espectroscopia de Ressonância Magnética , Redes e Vias Metabólicas , Metaboloma , Precursores de Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA