Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(33): 8033-8047, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39045831

RESUMO

Biomineralization is a natural process in which organisms regulate the growth of inorganic minerals to form biominerals with unique layered structures, such as bones and teeth, primarily composed of calcium and phosphorus. Tooth decay significantly impacts our daily lives, and the key to tooth regeneration lies in restoring teeth through biomimetic approaches, utilizing mineralization strategies or materials that mimic natural processes. This review delves into the types, properties, and transformations of calcium and phosphorus minerals, followed by an exploration of the mechanisms behind physiological and pathological mineralization in living organisms. It summarizes the mechanisms and commonalities of biomineralization and discusses the advancements in dental biomineralization research, guided by insights into calcium and phosphorus mineral biomineralization. This review concludes by addressing the current challenges and future directions in the field of dental biomimetic mineralization.


Assuntos
Biomineralização , Cálcio , Fósforo , Dente , Humanos , Fósforo/química , Cálcio/metabolismo , Dente/química , Animais
2.
J Biomed Mater Res A ; 112(9): 1412-1423, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38461494

RESUMO

Dental enamel is a mineralized extracellular matrix, and enamel defect is a common oral disease. However, the self-repair capacity of enamel is limited due to the absence of cellular components and organic matter. Efficacy of biomimetic enamel mineralization using calcium phosphate ion clusters (CPICs), is an effective method to compensate for the limited self-healing ability of fully developed enamel. Preparing and stabilizing CPICs presents a significant challenge, as the addition of certain stabilizers can diminish the mechanical properties or biosafety of mineralized enamel. To efficiently and safely repair enamel damage, this study quickly prepared CPICs without stabilizers using the atomization method. The formed CPICs were evenly distributed on the enamel surface, prompting directional growth and transformation of hydroxyapatite (HA) crystals. The study revealed that the mended enamel displayed comparable morphology, chemical composition, hardness, and mechanical properties to those of the original enamel. The approach of repairing dental enamel by utilizing ultrasonic nebulization of CPICs is highly efficient and safe, therefore indicating great promise.


Assuntos
Materiais Biomiméticos , Fosfatos de Cálcio , Esmalte Dentário , Fosfatos de Cálcio/química , Esmalte Dentário/química , Materiais Biomiméticos/química , Humanos , Biomimética/métodos , Durapatita/química , Animais
3.
Clin Oral Investig ; 27(5): 2027-2040, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36933046

RESUMO

OBJECTIVES: Dental caries is the most common chronic disease in humans, caused by the acid produced by the microflora in the mouth that dissolves the enamel minerals. Bioactive glass (BAG) has been used in various clinical applications due to its unique bioactive properties, such as bone graft substitutes and dental restorative composites. In this study, we introduce a novel bioactive glass-ceramic (NBGC) prepared through a sol-gel process under a water-free condition. MATERIALS AND METHODS: The anti-demineralization and remineralization effects of NBGC were evaluated by comparing the measurements of bovine enamel surface morphology, surface roughness, surface micro-hardness, enamel elements, and mineral content before and after related treatments with a commercial BAG. The antibacterial effect was characterized by minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). RESULTS: Results showed that NBGC had greater acid resistance and remineralization potential compared to commercial BAG. The fast formation of a hydroxy carbonate apatite (HCA) layer suggests efficient bioactivity. CLINICAL RELEVANCE: In addition to its antibacterial properties, NBGC shows promise as an ingredient in oral care products that can prevent demineralization and restore enamel.


Assuntos
Cárie Dentária , Humanos , Animais , Bovinos , Cárie Dentária/prevenção & controle , Esmalte Dentário , Dureza , Minerais/farmacologia , Cerâmica/farmacologia , Antibacterianos/farmacologia , Remineralização Dentária/métodos
4.
Colloids Surf B Biointerfaces ; 72(2): 230-5, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19419847

RESUMO

To investigate the influence of the protein surface-density gradient on endothelial cell alignment, a novel approach for the fabrication of a laminin gradient on gold-coated substrates has been developed in this study. Our approach involves programmed inkjet printing of an alkanethiol (11-mercaptoundecanoic acid, C(10)COOH, MUA) gradient onto gold-coated substrates, followed by backfilling with 11-mercapto-1-undecanol (C(11)OH, MUD). The -COOH moieties were activated and then covalently linked with laminin. This treatment led to a surface-density gradient of laminin. Contact angle measurement, X-ray photoelectron spectroscopy (XPS) and fluorescence microscopy were employed to characterize the self-assembled monolayers (SAMs) and protein gradient, respectively. Results proved the feasibility of the fabrication of a protein gradient by using the inkjet printing technique. The self-assembled monolayer gradients displayed a high packing density, as indicated by dynamic contact angle measurement. More importantly, the gradient slope was easily tunable over a significant distance from 20 to 30 mm. The laminin gradient was clearly visible by fluorescence microscopy observation. Endothelial cells cultured on the surface-density gradient of laminin demonstrated a strong alignment tendency in parallel to the gradient. The higher the laminin density the more cells were observed. The result indicates that cell attachment is dependent on the surface density of laminin. This work broadens our methodology to investigate chemical stimuli-induced cell directional alignment. It is potentially important for understanding cell alignment/ingrowth behavior for angiogenesis and implant technology including tissue-engineered structures.


Assuntos
Células Endoteliais/citologia , Laminina/química , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Células Endoteliais/efeitos dos fármacos , Ouro/química , Humanos , Nanoestruturas/química , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA