Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 307
Filtrar
1.
Clin Cardiol ; 47(9): e70010, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39233528

RESUMO

OBJECTIVE: This study aimed to investigate the impact of the donor-recipient BMI ratio on the survival outcomes of heart transplant recipients. METHODS: A retrospective analysis was conducted on 641 heart transplant patients who underwent surgery between September 2008 and June 2021. The BMI ratio (donor BMI divided by recipient BMI) was calculated for each patient. Kaplan-Meier survival analysis and Cox proportional hazards regression were performed to evaluate survival rates and determine the hazard ratio (HR) for mortality. RESULTS: Significant differences were found in donor age and donor-recipient height ratio between the BMI ratio groups. The BMI ratio ≥ 1 group had a higher mean donor age (37.27 ± 10.54 years) compared to the BMI ratio < 1 group (34.72 ± 11.82 years, p = 0.008), and a slightly higher mean donor-recipient height ratio (1.02 ± 0.06 vs. 1.00 ± 0.05, p = 0.002). The Kaplan-Meier survival analysis indicated that the survival rate in the BMI ratio ≥ 1 group was significantly lower than in the BMI ratio < 1 group. Cox multivariate analysis, adjusted for confounding factors, revealed a HR of 1.50 (95% CI: 1.08-2.09) for mortality in patients with a BMI ratio ≥ 1. No significant differences were observed in ICU stay, postoperative hospitalization days, or total mechanical ventilation time between the groups. CONCLUSION: A higher donor-recipient BMI ratio was associated with an increased risk of mortality in heart transplant recipients.


Assuntos
Índice de Massa Corporal , Transplante de Coração , Doadores de Tecidos , Humanos , Estudos Retrospectivos , Feminino , Masculino , Adulto , Doadores de Tecidos/estatística & dados numéricos , Taxa de Sobrevida/tendências , Fatores de Risco , Pessoa de Meia-Idade , Seguimentos , Fatores de Tempo , Resultado do Tratamento
2.
Biomed Pharmacother ; 178: 117241, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39111082

RESUMO

Calcific aortic valve disease (CAVD) primarily involves osteogenic differentiation in human aortic valve interstitial cells (hVICs). Schisandrol B (SolB), a natural bioactive constituent, has known therapeutic effects on inflammatory and fibrotic disorders. However, its impact on valve calcification has not been reported. We investigated the effect of SolB on osteogenic differentiation of hVICs. Transcriptome sequencing was used to analyze potential molecular pathways affected by SolB treatment. The study also included an in vivo murine model using aortic valve wire injury surgery to observe SolB's effect on valve calcification. SolB inhibited the osteogenic differentiation of hVICs, reversing the increase in calcified nodule formation and osteogenic proteins. In the murine model, SolB significantly decreased the peak velocity of the aortic valve post-injury and reduced valve fibrosis and calcification. Transcriptome sequencing identified the p53 signaling pathway as a key molecular target of SolB, demonstrating its role as a molecular glue in the mouse double minute 2 (MDM2)-p53 interaction, thereby promoting p53 ubiquitination and degradation, which further inhibited p53-related inflammatory and senescence response. These results highlighted therapeutic potential of SolB for CAVD via inhibiting p53 signaling pathway and revealed a new molecular mechanism of SolB which provided a new insight of theraputic mechanism for CAVD.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica , Calcinose , Ciclo-Octanos , Lignanas , Proteína Supressora de Tumor p53 , Animais , Humanos , Masculino , Camundongos , Valva Aórtica/patologia , Valva Aórtica/efeitos dos fármacos , Valva Aórtica/metabolismo , Estenose da Valva Aórtica/tratamento farmacológico , Estenose da Valva Aórtica/patologia , Calcinose/tratamento farmacológico , Calcinose/patologia , Calcinose/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Ciclo-Octanos/farmacologia , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/patologia , Inflamação/metabolismo , Lignanas/farmacologia , Camundongos Endogâmicos C57BL , Osteogênese/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
3.
Front Cardiovasc Med ; 11: 1425900, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114560

RESUMO

This case report describes a 3-month-old male infant diagnosed with severe mitral stenosis (MS) and mitral regurgitation (MR) by transthoracic echocardiography. The male infant initially underwent complex mitral valve repair surgery. However, postoperative deterioration occurred with hemodynamic instability and shock, necessitating multiple resuscitation efforts and ultimately requiring support from Extracorporeal Membrane Oxygenation (ECMO). Given the serious conditions, the cardiac team decided to perform mitral valve replacement with a fresh allograft aortic valve. Postoperatively, the patient was promptly weaned off ECMO support, and the valve demonstrated sustained functionality throughout the long-term follow-up.

4.
Transpl Int ; 37: 11354, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119063

RESUMO

Background: In the early postoperative stage after heart transplantation, there is a lack of predictive tools to guide postoperative management. Whether the vasoactive-inotropic score (VIS) can aid this prediction is not well illustrated. Methods: In total, 325 adult patients who underwent heart transplantation at our center between January 2015 and December 2018 were included. The maximum VIS (VISmax) within 24 h postoperatively was calculated. The Kaplan-Meier method was used for survival analysis. A logistic regression model was established to determine independent risk factors and to develop a nomogram for a composite severe adverse outcome combining early mortality and morbidity. Results: VISmax was significantly associated with extensive early outcomes such as early death, renal injury, cardiac reoperation and mechanical circulatory support in a grade-dependent manner, and also predicted 90-day and 1-year survival (p < 0.05). A VIS-based nomogram for the severe adverse outcome was developed that included VISmax, preoperative advanced heart failure treatment, hemoglobin and serum creatinine. The nomogram was well calibrated (Hosmer-Lemeshow p = 0.424) with moderate to strong discrimination (C-index = 0.745) and good clinical utility. Conclusion: VISmax is a valuable prognostic index in heart transplantation. In the early post-transplant stage, this VIS-based nomogram can easily aid intensive care clinicians in inferring recipient status and guiding postoperative management.


Assuntos
Transplante de Coração , Nomogramas , Humanos , Transplante de Coração/efeitos adversos , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Estudos Retrospectivos , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/diagnóstico , Insuficiência Cardíaca/cirurgia , Fatores de Risco , Cuidados Pós-Operatórios/métodos , Estimativa de Kaplan-Meier , Idoso , Prognóstico
5.
Nat Commun ; 15(1): 7462, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39198477

RESUMO

Regenerative heart valve prostheses are essential for treating valvular heart disease, which requested interactive materials that can adapt to the tissue remodeling process. Such materials typically involves intricate designs with multiple active components, limiting their translational potential. This study introduces a facile method to engineer interactive materials for heart valve regeneration using 1,1'-thiocarbonyldiimidazole (TCDI) chemistry. TCDI crosslinking forms cleavable thiourea and thiocarbamate linkages which could gradually release H2S during degradation, therefore regulates the immune microenvironment and accelerates tissue remodeling. By employing this approach, a double network hydrogel was formed on decellularized heart valves (DHVs), showcasing robust anti-calcification and anti-thrombosis properties post fatigue testing. Post-implantation, the DHVs could adaptively degrade during recellularization, releasing H2S to further support tissue regeneration. Therefore, the comprehensive endothelial cell coverage and notable extracellular matrix remodeling could be clearly observed. This accessible and integrated strategy effectively overcomes various limitations of bioprosthetic valves, showing promise as an attractive approach for immune modulation of biomaterials.


Assuntos
Próteses Valvulares Cardíacas , Valvas Cardíacas , Hidrogéis , Regeneração , Engenharia Tecidual , Hidrogéis/química , Regeneração/efeitos dos fármacos , Animais , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química , Humanos , Matriz Extracelular/metabolismo , Bioprótese , Alicerces Teciduais/química , Células Endoteliais da Veia Umbilical Humana , Imidazóis/química , Imidazóis/farmacologia
6.
Biomedicines ; 12(8)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39200290

RESUMO

The ischemia-reperfusion process of a donor heart during heart transplantation leads to severe mitochondrial dysfunction, which may be the main cause of donor heart dysfunction after heart transplantation. Pyruvate carboxylase (PC), an enzyme found in mitochondria, is said to play a role in the control of oxidative stress and the function of mitochondria. This research examined the function of PC and discovered the signaling pathways controlled by PC in myocardial IRI. We induced IRI using a murine heterotopic heart transplantation model in vivo and a hypoxia-reoxygenation cell model in vitro and evaluated inflammatory responses, oxidative stress levels, mitochondrial function, and cardiomyocyte apoptosis. In both in vivo and in vitro settings, we observed a significant decrease in PC expression during myocardial IRI. PC knockdown aggravated IRI by increasing MDA content, LDH activity, TUNEL-positive cells, serum cTnI level, Bax protein expression, and the level of inflammatory cytokines and decreasing SOD activity, GPX activity, and Bcl-2 protein expression. PC overexpression yielded the opposite findings. Additional research indicated that reducing PC levels could block the Wnt/ß-catenin pathway and glutamine metabolism by hindering the movement of ß-catenin to the nucleus and reducing the activity of complex I and complex II, as well as ATP levels, while elevating the ratios of NADP+/NADPH and GSSG/GSH. Overall, the findings indicated that PC therapy can shield the heart from IRI during heart transplantation by regulating glutamine metabolism through the Wnt/ß-catenin pathway.

7.
Biomedicines ; 12(8)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39200309

RESUMO

Gastrointestinal bleeding (GIB) after heart transplantation (HT) remains a significant clinical issue. This study aimed to explore the incidence, trends, outcomes, and clinical predictors of GIB in HT patients. Adult patients who underwent HT between 2015 and 2021 at Union Hospital were recruited and divided into two groups based on the presence or absence of postoperative GIB. The primary outcomes were evaluated at follow-up. Independent predictors of GIB after HT were identified using a logistic regression analysis. A nomogram prediction model was constructed according to these independent variables, and the accuracy of the model was assessed using the receiver operating characteristic (ROC) curve and the calibration curve. Among the 461 patients, 40 (8.7%) developed GIB post-HT. HT patients with postoperative GIB exhibited higher in-hospital, 30-day, 90-day, and 1-year mortality (all p < 0.05). A multivariate analysis was used to identify age, preoperative warfarin, postoperative continuous renal replacement therapy, and postoperative nasogastric tubes as independent risk factors for GIB following HT. A nomogram prediction model was applied using the four variables. The area under the curve (AUC) of this model was 0.852 (95% CI: 0.787-0.917, p < 0.001), and the calibration curve was close to the ideal diagonal line. GIB following HT is associated with a poor clinical prognosis. The constructed nomogram demonstrated a favorable predictive value for GIB.

8.
Biomed Pharmacother ; 178: 117143, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39024838

RESUMO

Calcific aortic valve disease (CAVD) is prevalent in developed nations and has emerged as a pressing global public health concern due to population aging. The precise etiology of this disease remains uncertain, and recent research has primarily focused on examining the role of valvular interstitial cells (VICs) in the development of CAVD. The predominant treatment options currently available involve open surgery and minimally invasive interventional surgery, with no efficacious pharmacological treatment. This article seeks to provide a comprehensive understanding of valvular endothelial cells (VECs) from the aspects of valvular endothelium-derived nitric oxide (NO), valvular endothelial mechanotransduction, valvular endothelial injury, valvular endothelial-mesenchymal transition (EndMT), and valvular neovascularization, which have received less attention, and aims to establish their role and interaction with VICs in CAVD. The ultimate goal is to provide new perspectives for the investigation of non-invasive treatment options for this disease.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica , Calcinose , Células Endoteliais , Humanos , Calcinose/patologia , Valva Aórtica/patologia , Valva Aórtica/metabolismo , Células Endoteliais/patologia , Células Endoteliais/metabolismo , Animais , Estenose da Valva Aórtica/patologia , Óxido Nítrico/metabolismo , Mecanotransdução Celular , Valvopatia Aórtica/metabolismo , Valvopatia Aórtica/patologia , Transição Epitelial-Mesenquimal
9.
Int J Surg ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954672

RESUMO

BACKGROUND: Acute kidney injury (AKI) is a common and serious complication after cardiac surgery that significantly affects patient outcomes. Given the limited treatment options available, identifying modifiable risk factors is critical. Frailty and obesity, two heterogeneous physiological states, have significant implications for identifying and preventing AKI. Our study investigated the interplay among frailty, body composition, and AKI risk after cardiac surgery to inform patient management strategies. MATERIAL AND METHODS: This retrospective cohort study included three international cohorts. Primary analysis was conducted in adult patients who underwent cardiac surgery between 2014 and 2019 at Wuhan XX Hospital, China. We tested the generalizability of our findings with data from two independent international cohorts, the Medical Information Mart for Intensive Care IV (MIMIC-IV) and the eICU Collaborative Research Database. Frailty was assessed using a clinical lab-based frailty index (FI-LAB), while total body fat percentage (BF%) was calculated based on a formula accounting for BMI, sex, and age. Logistic regression models were used to analyze the associations between frailty, body fat, and AKI, adjusting for pertinent covariates. RESULTS: A total of 8785 patients across three international cohorts were included in the study. In the primary analysis of 3,569 patients from Wuhan XX Hospital, moderate and severe frailty were associated with an increased AKI risk after cardiac surgery. Moreover, a nonlinear relationship was observed between body fat percentage and AKI risk. When stratified by the degree of frailty, lower body fat correlated with a decreased incidence of AKI. Extended analyses using the MIMIC-IV and eICU cohorts (n=3,951 and n=1,265, respectively) validated these findings and demonstrated that a lower total BF% was associated with decreased AKI incidence. Moderation analysis revealed that the effect of frailty on AKI risk was moderated by the body fat percentage. Sensitivity analyses demonstrated results consistent with the main analyses. CONCLUSION: Higher degrees of frailty were associated with an elevated risk of AKI following cardiac surgery, and total BF% moderated this relationship. This research underscores the significance of integrating frailty and body fat assessments into routine cardiovascular care to identify high-risk patients for AKI and implement personalized interventions to improve patient outcomes.

10.
ACS Appl Mater Interfaces ; 16(28): 35936-35948, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38958205

RESUMO

Tissue-engineered heart valve (TEHV) has emerged as a prospective alternative to conventional valve prostheses. The decellularized heart valve (DHV) represents a promising TEHV scaffold that preserves the natural three-dimensional structure and retains essential biological activity. However, the limited mechanical strength, fast degradation, poor hemocompatibility, and lack of endothelialization of DHV restrict its clinical use, which is necessary for ensuring its long-term durability. Herein, we used oxidized chondroitin sulfate (ChS), one of the main components of the extracellular matrix with various biological activities, to cross-link DHV to overcome the above problems. In addition, the ChS-adipic dihydrazide was used to react with residual aldehyde groups, thus preventing potential calcification. The results indicated notable enhancements in mechanical properties and resilience against elastase and collagenase degradation in vitro as well as the ability to withstand extended periods of storage without compromising the structural integrity of valve scaffolds. Additionally, the newly cross-linked valves exhibited favorable hemocompatibility in vitro and in vivo, thereby demonstrating exceptional biocompatibility. Furthermore, the scaffolds exhibited traits of gradual degradation and resistance to calcification through a rat subcutaneous implantation model. In the rat abdominal aorta implantation model, the scaffolds demonstrated favorable endothelialization, commendable patency, and a diminished pro-inflammatory response. As a result, the newly constructed DHV scaffold offers a compelling alternative to traditional valve prostheses, which potentially advances the field of TEHV.


Assuntos
Sulfatos de Condroitina , Animais , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacologia , Ratos , Próteses Valvulares Cardíacas , Engenharia Tecidual , Valvas Cardíacas/efeitos dos fármacos , Valvas Cardíacas/química , Ratos Sprague-Dawley , Alicerces Teciduais/química , Teste de Materiais , Humanos , Reagentes de Ligações Cruzadas/química , Masculino , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Suínos
11.
Eur Heart J ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976370

RESUMO

BACKGROUND AND AIMS: Valve interstitial cells (VICs) undergo a transition to intermediate state cells before ultimately transforming into the osteogenic cell population, which is a pivotal cellular process in calcific aortic valve disease (CAVD). Herein, this study successfully delineated the stages of VIC osteogenic transformation and elucidated a novel key regulatory role of lumican (LUM) in this process. METHODS: Single-cell RNA-sequencing (scRNA-seq) from nine human aortic valves was used to characterize the pathological switch process and identify key regulatory factors. The in vitro, ex vivo, in vivo, and double knockout mice were constructed to further unravel the calcification-promoting effect of LUM. Moreover, the multi-omic approaches were employed to analyse the molecular mechanism of LUM in CAVD. RESULTS: ScRNA-seq successfully delineated the process of VIC pathological transformation and highlighted the significance of LUM as a novel molecule in this process. The pro-calcification role of LUM is confirmed on the in vitro, ex vivo, in vivo level, and ApoE-/-//LUM-/- double knockout mice. The LUM induces osteogenesis in VICs via activation of inflammatory pathways and augmentation of cellular glycolysis, resulting in the accumulation of lactate. Subsequent investigation has unveiled a novel LUM driving histone modification, lactylation, which plays a role in facilitating valve calcification. More importantly, this study has identified two specific sites of histone lactylation, namely, H3K14la and H3K9la, which have been found to facilitate the process of calcification. The confirmation of these modification sites' association with the expression of calcific genes Runx2 and BMP2 has been achieved through ChIP-PCR analysis. CONCLUSIONS: The study presents novel findings, being the first to establish the involvement of lumican in mediating H3 histone lactylation, thus facilitating the development of aortic valve calcification. Consequently, lumican would be a promising therapeutic target for intervention in the treatment of CAVD.

12.
J Cardiovasc Dev Dis ; 11(7)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39057607

RESUMO

Ischemic cardiomyopathy patients with severe left ventricular dysfunction are a specific group of patients with poor surgical outcomes. There are few surgical treatment options in practice for the treatment of these patients such as heart transplantation, coronary artery bypass surgery, surgical ventricular restoration, etc. Despite multiple treatment options, there are no explicit clinical guidelines available to guide surgeons in choosing the most appropriate option and ensuring that the specific patient can benefit from the selected surgical treatment. Heart transplantation is the gold standard treatment for ischemic cardiomyopathy patients with severe left ventricular dysfunction, but it is limited to very few highly equipped centers around the world due to donor shortages, complex perioperative and surgical management, and limited technological and human resources. It is evident from some studies that heart transplant-eligible candidates can benefit from alternative surgical options such as coronary artery bypass surgery alone or combined with surgical ventricular restoration. Therefore, alternative surgical options that are used for most of the population, especially in developing and underdeveloped countries, need to be discussed to improve their outcomes. A challenge in the recent era which has yet to find a solution is to determine which heart transplant candidate can benefit from simple revascularization compared to a complex heart transplantation procedure. Myocardial viability testing was one of the most important determinants in deciding whether a patient should undergo revascularization, but its role in guiding appropriate surgical options has been challenged. This review aims to discuss the available surgical management options and their long-term outcomes for patients with ischemic cardiomyopathy, which will eventually help surgeons when choosing a surgical procedure.

13.
Mol Med ; 30(1): 88, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879491

RESUMO

BACKGROUND: Macrophages play a crucial role in the development of cardiac fibrosis (CF). Although our previous studies have shown that glycogen metabolism plays an important role in macrophage inflammatory phenotype, the role and mechanism of modifying macrophage phenotype by regulating glycogen metabolism and thereby improving CF have not been reported. METHODS: Here, we took glycogen synthetase kinase 3ß (GSK3ß) as the target and used its inhibitor NaW to enhance macrophage glycogen metabolism, transform M2 phenotype into anti-fibrotic M1 phenotype, inhibit fibroblast activation into myofibroblasts, and ultimately achieve the purpose of CF treatment. RESULTS: NaW increases the pH of macrophage lysosome through transmembrane protein 175 (TMEM175) and caused the release of Ca2+ through the lysosomal Ca2+ channel mucolipin-2 (Mcoln2). At the same time, the released Ca2+ activates TFEB, which promotes glucose uptake by M2 and further enhances glycogen metabolism. NaW transforms the M2 phenotype into the anti-fibrotic M1 phenotype, inhibits fibroblasts from activating myofibroblasts, and ultimately achieves the purpose of treating CF. CONCLUSION: Our data indicate the possibility of modifying macrophage phenotype by regulating macrophage glycogen metabolism, suggesting a potential macrophage-based immunotherapy against CF.


Assuntos
Fibrose , Macrófagos , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Camundongos , Glicogênio Sintase Quinase 3 beta/metabolismo , Miofibroblastos/metabolismo , Glicogênio/metabolismo , Cálcio/metabolismo , Lisossomos/metabolismo , Fibroblastos/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Masculino , Camundongos Endogâmicos C57BL
14.
J Nanobiotechnology ; 22(1): 378, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943185

RESUMO

Tissue engineered heart valves (TEHVs) demonstrates the potential for tissue growth and remodel, offering particular benefit for pediatric patients. A significant challenge in designing functional TEHV lies in replicating the anisotropic mechanical properties of native valve leaflets. To establish a biomimetic TEHV model, we employed melt-electrowriting (MEW) technology to fabricate an anisotropic PCL scaffold. By integrating the anisotropic MEW-PCL scaffold with bioactive hydrogels (GelMA/ChsMA), we successfully crafted an elastic scaffold with tunable mechanical properties closely mirroring the structure and mechanical characteristics of natural heart valves. This scaffold not only supports the growth of valvular interstitial cells (VICs) within a 3D culture but also fosters the remodeling of extracellular matrix of VICs. The in vitro experiments demonstrated that the introduction of ChsMA improved the hemocompatibility and endothelialization of TEHV scaffold. The in vivo experiments revealed that, compared to their non-hydrogel counterparts, the PCL-GelMA/ChsMA scaffold, when implanted into SD rats, significantly suppressed immune reactions and calcification. In comparison with the PCL scaffold, the PCL-GelMA/ChsMA scaffold exhibited higher bioactivity and superior biocompatibility. The amalgamation of MEW technology and biomimetic design approaches provides a new paradigm for manufacturing scaffolds with highly controllable microstructures, biocompatibility, and anisotropic mechanical properties required for the fabrication of TEHVs.


Assuntos
Valvas Cardíacas , Hidrogéis , Ratos Sprague-Dawley , Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Animais , Alicerces Teciduais/química , Anisotropia , Ratos , Hidrogéis/química , Materiais Biocompatíveis/química , Próteses Valvulares Cardíacas , Poliésteres/química , Células Cultivadas , Humanos , Matriz Extracelular/química , Masculino
15.
Redox Biol ; 73: 103215, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38810422

RESUMO

The prevalence of calcific aortic valve disease (CAVD) remains substantial while there is currently no medical therapy available. Forkhead box O1 (FOXO1) is known to be involved in the pathogenesis of cardiovascular diseases, including vascular calcification and atherosclerosis; however, its specific role in calcific aortic valve disease remains to be elucidated. In this study, we identified FOXO1 significantly down-regulated in the aortic valve interstitial cells (VICs) of calcified aortic valves by investigating clinical specimens and GEO database analysis. FOXO1 silencing or inhibition promoted VICs osteogenic differentiation in vitro and aortic valve calcification in Apoe-/- mice, respectively. We identified that FOXO1 facilitated the ubiquitination and degradation of RUNX2, which process was mainly mediated by SMAD-specific E3 ubiquitin ligase 2 (SMURF2). Our discoveries unveil a heretofore unacknowledged mechanism involving the FOXO1/SMURF2/RUNX2 axis in CAVD, thereby proposing the potential therapeutic utility of FOXO1 or SMURF2 as viable strategies to impede the progression of CAVD.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica , Calcinose , Subunidade alfa 1 de Fator de Ligação ao Core , Proteína Forkhead Box O1 , Ubiquitina-Proteína Ligases , Ubiquitinação , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Animais , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Camundongos , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Calcinose/metabolismo , Calcinose/patologia , Calcinose/genética , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Estenose da Valva Aórtica/genética , Masculino , Osteogênese/genética , Modelos Animais de Doenças , Diferenciação Celular
16.
Front Immunol ; 15: 1383607, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715600

RESUMO

Background: The crucial role of inflammation in aortic aneurysm (AA) is gaining prominence, while there is still a lack of key cytokines or targets for effective clinical translation. Methods: Mendelian randomization (MR) analysis was performed to identify the causal relationship between 91 circulating inflammatory proteins and AA and between 731 immune traits and AA. Bulk RNA sequencing data was utilized to demonstrate the expression profile of the paired ligand-receptor. Gene enrichment analysis, Immune infiltration, and correlation analysis were employed to deduce the potential role of CX3CR1. We used single-cell RNA sequencing data to pinpoint the localization of CX3CL1 and CX3CR1, which was further validated by multiplex immunofluorescence staining. Cellchat analysis was utilized to infer the CX3C signaling pathway. Trajectory analysis and the Cytosig database were exploited to determine the downstream effect of CX3CL1-CX3CR1. Results: We identified 4 candidates (FGF5, CX3CL1, IL20RA, and SCF) in multiple two-sample MR analyses. Subsequent analysis of the expression profile of the paired receptor revealed the significant upregulation of CX3CR1 in AA and its positive correlation with pro-inflammatory macrophages. Two sample MR between immune cell traits and AA demonstrated the potential causality between intermediate monocytes and AA. We finally deciphered in single-cell sequencing data that CX3CL1 sent by endothelial cells (ECs) acted on CX3CR1 of intermediated monocytes, leading to its recruitment and pro-inflammatory responses. Conclusion: Our study presented a genetic insight into the pathogenetic role of CX3CL1-CX3CR1 in AA, and further deciphered the CX3C signaling pathway between ECs and intermediate monocytes.


Assuntos
Aneurisma Aórtico , Receptor 1 de Quimiocina CX3C , Quimiocina CX3CL1 , Análise da Randomização Mendeliana , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Humanos , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Aneurisma Aórtico/genética , Aneurisma Aórtico/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Transdução de Sinais , Predisposição Genética para Doença
18.
Adv Healthc Mater ; 13(16): e2303737, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38560921

RESUMO

Tissue engineering heart valves (TEHVs) are expected to address the limitations of mechanical and bioprosthetic valves used in clinical practice. Decellularized heart valve (DHV) is an important scaffold of TEHVs due to its natural three-dimensional structure and bioactive extracellular matrix, but its mechanical properties and hemocompatibility are impaired. In this study, DHV is cross-linked with three different molecular weights of oxidized hyaluronic acid (OHA) by a Schiff base reaction and presented enhanced stability and hemocompatibility, which could be mediated by the molecular weight of OHA. Notably, DHV cross-linked with middle- and high-molecular-weight OHA could drive the macrophage polarization toward the M2 phenotype in vitro. Moreover, DHV cross-linked with middle-molecular-weight OHA scaffolds are further modified with RGD-PHSRN peptide (RPF-OHA/DHV) to block the residual aldehyde groups of the unreacted OHA. The results show that RPF-OHA/DHV not only exhibits anti-calcification properties, but also facilitates endothelial cell adhesion and proliferation in vitro. Furthermore, RPF-OHA/DHV shows excellent performance under an in vivo hemodynamic environment with favorable recellularization and immune regulation without calcification. The optimistic results demonstrate that OHA with different molecular weights has different cross-linking effects on DHV and that RPF-OHA/DHV scaffold with enhanced immune regulation, anti-calcification, and recellularization properties for clinical transformation.


Assuntos
Ácido Hialurônico , Engenharia Tecidual , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Animais , Engenharia Tecidual/métodos , Humanos , Valvas Cardíacas , Alicerces Teciduais/química , Imunomodulação/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Camundongos , Calcinose , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacologia , Próteses Valvulares Cardíacas , Proliferação de Células/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Adesão Celular/efeitos dos fármacos
20.
Adv Sci (Weinh) ; 11(20): e2307319, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38502885

RESUMO

The senescence of aortic valve interstitial cells (VICs) plays a critical role in the progression of calcific aortic valve disease (CAVD). However, the precise mechanisms underlying the senescence of VICs remain unclear, demanding the identification of a novel target to mitigate this process. Previous studies have highlighted the anti-aging potential of morusin. Thus, this study aimed to explore the therapeutic potential of morusin in CAVD. Cellular experiments reveal that morusin effectively suppresses cellular senescence and cause a shift toward osteogenic differentiation of VICs in vitro. Mechanistically, morusin activate the Nrf2-mediated antiaging signaling pathway by downregulating CCND1 expression and aiding Keap1 degradation through Trim 25. This activation lead to the upregulated expression of antioxidant genes, thus reducing reactive oxygen species production and thereby preventing VIC osteogenic differentiation. In vivo experiments in ApoE-/- mice on a high-fat Western diet demonstrate the positive effect of morusin in mitigating aortic valve calcification. These findings emphasize the antiaging properties of morusin and its potential as a therapeutic agent for CAVD.


Assuntos
Estenose da Valva Aórtica , Calcinose , Senescência Celular , Flavonoides , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/patologia , Calcinose/metabolismo , Calcinose/genética , Senescência Celular/efeitos dos fármacos , Ciclina D1/metabolismo , Ciclina D1/genética , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Flavonoides/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA