Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 22(7): 220, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34405290

RESUMO

3-O-ß-D-galactosylated resveratrol (Gal-Res) was synthesized from resveratrol (Res) and 3-O-ß-D-galactose (Gal) in our previous study. In order to improve the pH sensitivity and bioavailability of Gal-Res, Gal-Res nanoparticles (Gal-Res NPs) were prepared using polydopamine (PDA) as a drug carrier. The drug loading (DL %) and entrapment efficiency (EE %) of Gal-Res NPs were 46.80% and 88.06%. The average particle size, polydispersity index (PDI), and Zeta potential of Gal-Res NPs were 179.38 ± 2.83 nm, 0.129 ± 0.013, and - 28.05 ± 0.36 mV, respectively. The transmission electron microscope (TEM) showed that Gal-Res NPs had uniform spherical morphology. Compared with the fast release of raw Gal-Res, the in vitro release of Gal-Res NPs was slow and pH-sensitive. The results of the blood vessel irritation and hemolysis test demonstrated that Gal-Res NPs had good hemocompatibility. The pharmacokinetics study in rats showed that area under the curve of plasma drug concentration time (AUC0→600) and half-life (t1/2) of Gal-Res NPs were enhanced 1.82-fold and 2.19-fold higher than those of raw Gal-Res. The in vivo biodistribution results showed that Gal-Res NPs were more distributed in liver tissue than Gal-Res. Gal-Res NPs with high bioavailability and liver accumulation were hopeful drug delivery systems (DDS) to treat liver diseases.


Assuntos
Indóis/química , Nanopartículas , Polímeros/química , Portadores de Fármacos , Tamanho da Partícula , Resveratrol , Distribuição Tecidual
2.
Mol Pharm ; 18(3): 1470-1479, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33586444

RESUMO

To enhance the water solubility, oral bioavailability, and tumor targeting of gambogenic acid (GNA), polydopamine nanoparticles (PDA NPs) were prepared to encapsulate and stabilize GNA surface modified by folic acid (FA) and then coated with sodium alginate (GNA@PDA-FA SA NPs) to achieve an antitumor effect by oral administration. GNA@PDA-FA SA NPs exhibited in vitro pH-sensitive release behavior. In vitro cell studies manifested that GNA@PDA-FA NPs had higher cytotoxicity to 4T1 cells compared with raw GNA (IC50 = 2.58 µM vs 7.57 µM). After being modified with FA, GNA@PDA-FA NPs were taken up easily by 4T1 cells. In vivo studies demonstrated that the area under the curve (AUC0→∞) of the plasma drug concentration-time of GNA@PDA-FA SA NPs was 2.97-fold higher than that of raw GNA, along with improving drug distribution in the liver, lung, and kidney tissues. In vivo anti-tumor experiments, GNA@PDA-FA SA NPs significantly inhibited the growth of breast tumors in the 4T1 xenograft breast cancer model via oral administration without obvious toxicity on major organs. Our studies indicated that the GNA@PDA-FA SA NPs modified with FA and coated with SA were a promising drug delivery system for targeting tumor therapy via oral administration.


Assuntos
Indóis/química , Nanopartículas/química , Polímeros/química , Xantenos/administração & dosagem , Administração Oral , Animais , Disponibilidade Biológica , Linhagem Celular Tumoral , Portadores de Fármacos/química , Ácido Fólico/administração & dosagem , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Solubilidade/efeitos dos fármacos
3.
Int J Pharm ; 587: 119665, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32702449

RESUMO

As one of the active pharmaceutical ingredients in Gamboge, Gambogenic acid (GNA) has shown diverse anti-tumor activities. To reduce the vascular irritation of GNA and improve its water solubility, tumor targeting, and bioavailability, GNA loaded Zein nanoparticles (GNA@Zein NPs) was further coated by polydopamine (PDA) to develop GNA@Zein-PDA NPs by anti-solvent precipitation and surface modification. The results showed that particle size and Zeta potential of GNA@Zein-PDA NPs were about 310 nm and -40.8 mV with core-shell morphology confirmed by TEM. GNA@Zein-PDA NPs increased the water solubility of GNA by more than 700 times and showed pH-sensitive release behavior in PBS with pH 6.86. In vitro cytotoxicity tests showed that GNA@Zein-PDA NPs had higher inhibitory activity on HepG2 cells than free GNA, and their IC50 were 1.59 µg/mL and 9.89 µg/mL, respectively. Additionally, the hemolysis and vascular irritation assay showed that GNA@Zein-PDA NPs had good cytocompatibility and reduced the irritation of GNA to blood vessels. Moreover, the in vivo pharmacokinetic experiments exhibited that the Cmax and AUC0-t of GNA@Zein-PDA NPs were significantly improved approximately by 2.09-fold and 3.48-fold over that of GNA, respectively. In conclusion, GNA@Zein-PDA NPs solve many defects of GNA and provide a tumor-targeting drug delivery for GNA.


Assuntos
Nanopartículas , Zeína , Portadores de Fármacos , Concentração de Íons de Hidrogênio , Indóis , Tamanho da Partícula , Polímeros , Xantenos
4.
J Pharm Pharmacol ; 72(4): 496-506, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31975457

RESUMO

OBJECTIVES: Zein nanoparticles (Zein NPs) were used as a hydroxyapatite (HA) biomineralization template to generate HA/Zein NPs. Doxorubicin hydrochloride (DOX) was loaded on HA/Zein NPs (HA/Zein-DOX NPs) to improve its pH-sensitive release, bioavailability and decrease cardiotoxicity. METHODS: HA/Zein-DOX NPs were prepared by phase separation and biomimetic mineralization method. Particle size, polydispersity index (PDI), Zeta potential, transmission electron microscope, X-ray diffraction and Fourier-transform infrared spectroscopy of HA/Zein-DOX NPs were characterized. The nanoparticles were then evaluated in vitro and in vivo. KEY FINDINGS: The small PDI and high Zeta potential demonstrated that HA/Zein-DOX NPs were a stable and homogeneous dispersed system and that HA was mineralized on Zein-DOX NPs. HA/Zein-DOX NPs showed pH-sensitive release. Compared with free DOX, HA/Zein-DOX NPs increased cellular uptake which caused 7 times higher in-vitro cytotoxicity in 4T1 cells. Pharmacokinetic experiments indicated the t1/2ß and AUC0- t of HA/Zein-DOX NPs were 2.73- and 3.12-fold higher than those of DOX solution, respectively. Tissue distribution exhibited HA/Zein-DOX NPs reduced heart toxicity with lower heart targeting efficiency (18.58%) than that of DOX solution (37.62%). CONCLUSION: In this study, HA/Zein-DOX NPs represented an antitumour drug delivery system for DOX in clinical tumour therapy with improved bioavailability and decreased cardiotoxicity.


Assuntos
Doxorrubicina/administração & dosagem , Portadores de Fármacos/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Durapatita/farmacocinética , Nanopartículas/química , Zeína/farmacocinética , Animais , Disponibilidade Biológica , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Durapatita/química , Camundongos , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
5.
J Pharm Pharmacol ; 71(11): 1626-1634, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31468524

RESUMO

OBJECTIVES: Gambogenic acid (GNA), one of the main active ingredients isolated from Garcinia cambogia, has shown diverse antitumour activities. However, short biological half-life and low oral bioavailability severely limit its clinical application. Here, we developed GNA-loaded zein nanoparticles (GNA-ZN-NPs) based on phospholipid complex and zein nanoparticles to prolong the circulation time and enhance oral bioavailability of GNA. METHODS: The physicochemical properties of GNA-ZN-NP were characterized in details. The in vitro release profile, in vivo pharmacokinetic experiments and tissue distribution of GNA-ZN-NPs were also evaluated. KEY FINDINGS: The particle size, PDI and encapsulation efficiency of GNA-ZN-NPs were 102.90 nm, 0.027 and 76.35 ± 0.64%, respectively. The results of SEM, FTIR, DSC and XRD demonstrated that GNA-ZN-NPs were prepared successfully. The in vitro dissolution of GNA-ZN-NPs exhibited controlled release compared with raw GNA solution. The pharmacokinetic study showed that the AUC of GNA-ZN-NPs was significantly increased, and the t1/2 and MRT values of GNA-ZN-NPs were 3.21-fold and 2.19-fold higher than that of GNA solution. Tissue distribution results illustrated that GNA-ZN-NPs showed hepatic-targeting properties. CONCLUSION: GNA-ZN-NPs significantly enhanced the oral bioavailability and prolonged half-life of GNA, providing a promising oral drug delivery system to improve in vivo pharmacokinetic behaviour of GNA.


Assuntos
Nanopartículas/química , Xantenos/química , Xantenos/farmacocinética , Zeína/química , Animais , Disponibilidade Biológica , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Feminino , Meia-Vida , Masculino , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley
6.
Biomed Mater Eng ; 29(3): 333-345, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29578462

RESUMO

Nanosuspensions technique is an important tool to enhance the saturation solubility and dissolution velocity of poorly soluble drugs. Trans-resveratrol (t-Res) with extensive pharmacological effects was severely restricted by poor solubility and short biological half-life. In this study, anti-solvent precipitation was employed to development trans-resveratrol nanosuspensions (t-Res NS) with PVPK30 as stabilizer. The physicochemical properties, in vitro release and in vivo pharmacokinetics of t-Res NS were investigated. The mean particle size, zeta potential, encapsulation efficiency and drug loading of t-Res NS prepared by the optimal prescription were 96.9 nm, -20.4mV, 78% and 28.1%, respectively. The morphology of t-Res nanoparticles was spherical indicated by SEM with amorphous phase verified by XRD and DSC. The t-Res NS present a good physical stability as well as enhanced chemical stability. Compared to crude drug, the in vitro dissolution rate of t-Res NS was increased with fitting Higuchi equation (Q=0.3215t1/2+0.0070). The in vivo pharmacokinetic test in rats showed that the AUC0∼t of t-Res NS (559.4 µg/mL·min) was about 3.6-fold higher than that of t-Res solution. Meanwhile, the MRT of t-Res nanosuspensions was longer than that of t-Res solution. These results suggested that NS may be a potentially nanocarrier for clinical delivery of t-Res.


Assuntos
Antioxidantes/administração & dosagem , Antioxidantes/farmacocinética , Nanopartículas/química , Estilbenos/administração & dosagem , Estilbenos/farmacocinética , Animais , Antioxidantes/química , Disponibilidade Biológica , Liberação Controlada de Fármacos , Nanopartículas/ultraestrutura , Tamanho da Partícula , Ratos Sprague-Dawley , Resveratrol , Solubilidade , Estilbenos/química , Suspensões/química
7.
Polymers (Basel) ; 10(10)2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30961022

RESUMO

Colorization for fabricating aluminum pigments has broad application prospects in recent years. In this study, yellow-colored aluminum pigments with the double-layer structure Al@SiO2@PFMV were prepared using a sol-gel method. A crosslinked copolymeric dye (PFMV) was firstly synthesized by radical polymerization using vinyl triethoxysilane (VTES) and a small molecular dye (FGMAC) as monomers. Then, colored aluminum pigments were prepared by hydrolysis and condensation of the copolymers on the surface of aluminum pigments. SEM, AFM, FTIR, and XPS were used to characterize the surface morphology and chemical structure of the colored aluminum pigments. It was found that the colored aluminum pigments have a heterogeneous and smooth surface layer. The anticorrosion results showed that the colored aluminum pigments had better chemical stability with significantly improving corrosion resistance compared to raw aluminum pigments and Al@SiO2 with the single-layer coating. Chromatism analysis indicated that the lightness of Al@SiO2@PFMV pigments decreased slightly and the color changed from silver-gray to yellow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA