Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 34(11): 3127-3134, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37997424

RESUMO

We investigated the responses of community structure of soil arthropods to yak and Tibetan sheep grazing based on a manipulated grazing experiment at the alpine meadow livestock Adaptive Management Platform, which locates in Haiyan County, Qinghai Province. The results showed that the obtained soil arthropods belonged to 26 families, 8 orders, and 4 classes, with Acaroidae and Oribatida as the dominant groups. Yak and Tibetan sheep grazing decreased the abundance but increased Shannon index, Margalef index and Pielou index of soil arthropods. Yak grazing significantly increased the quantity of the predatory soil arthropod groups. Yak and Tibetan sheep gra-zing significantly increased the quantity of the detritivore soil arthropod groups, but did not affect the quantity of the omnivorous and phytophagous soil arthropod groups. Yak and Tibetan sheep grazing significantly reduced the abundance of soil mites. Soil bulk density, available potassium, and available nitrogen were the main abiotic factors affecting soil arthropods community composition.


Assuntos
Artrópodes , Humanos , Animais , Bovinos , Ovinos , Tibet , Pradaria , Solo/química , China
2.
Sci Total Environ ; 900: 165814, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37517723

RESUMO

The primary utilization strategy for meadow grasslands on the Qinghai-Tibet Plateau (QTP) is livestock grazing. This practice is considered as one of the major drivers of plant-associated bacterial community construction and changes in soil properties. The species of Kobresia humilis is considered as the most dominant one in grasslands. However, how different grazing practices affect the phyllosphere and rhizosphere bacterial communities of K. humilis is unknown. To address this issue, the effects of the grazing enclosure (GE), single-species grazing (YG and SG, representing yak only and sheep only, respectively), and different ratios of grazing (ratio of yak to sheep is 1:2, 1:4, and 1:6, represented by MG1:2, MG1:4, and MG1:6, respectively) on the dominant plant of K. humilis, it's phyllosphere and rhizosphere bacteria, and soil properties were investigated using artificially controlled grazing and grazing enclosure. Our data showed that grazing enclosure enhanced vegetation coverage, and rhizosphere bacterial richness and diversity, while reduced plant number and bacterial network stability of K. humilis. The NO3--N, K+, and Cl- concentrations were lower under grazing compared to GE. SG reduced the concentration of NH4+-N, TN, K+, and Na+ compared to YG. Moderate grazing intensity had a lower relative abundance of the r-strategists (Bacteroidota and Gammaproteobacteria) with higher bacterial network stability. Yak and sheep grazing showed reversed impacts on the bacterial network stability between the phyllosphere and rhizosphere of K. humilis. Proteobacteria and Actinobacteriota were identified in the molecular ecological network analysis as keystone taxa in the phyllosphere and rhizosphere networks, respectively, under all treatments. This study explained why sheep grazing has more adverse effects on grazing-tolerant grass species, K. humilis, than yak grazing, and will contribute to a better understanding of the impacts of different grazing practices and grazing enclosure on alpine grassland ecosystems on the QTP.


Assuntos
Carex (Planta) , Ecossistema , Animais , Ovinos , Pradaria , Rizosfera , Tibet , Bactérias , Solo
3.
Ying Yong Sheng Tai Xue Bao ; 33(5): 1251-1259, 2022 May.
Artigo em Chinês | MEDLINE | ID: mdl-35730083

RESUMO

In order to clarify the influence of livestock grazing managements on C:N:P stoichiometry of grassland ecosystem and improve grassland management ability at global scale, 83 Chinese and English papers were selected for meta-analysis in this study. We explored the effects of grazing herbivore assemblage (sheep alone, cattle alone, and mixed cattle and sheep) and grazing intensity (light grazing, moderate grazing and heavy grazing) on leaf, litter, root and soil C, N and P stoichiometry of grassland ecosystems. The results showed that grazing significantly decreased C content, C/N and C/P, and increased N, P content and N/P in leaf and litter. C content, N content, C/P and N/P were significantly reduced, and P content and C/N were increased in root and soil. Leaf and litter stoichiometry were more sensitive to cattle and sheep grazing alone, while root and soil stoichiometry were more sensitive to mixed grazing. Heavy grazing had a greater impact on the stoichiometry of grassland ecosystems. Grazing reduced soil N content and increased P content, indicating that grazing had different pathways of influence on grassland N and P content. Further research on the mechanisms of N and P content changes in response to unbalanced grazing activities and the incorporation of the effects of grazing herbivore assemblage and intensity into models for predicting and managing grassland ecosystems could effectively improve grassland ecosystem management.


Assuntos
Ecossistema , Gado , Animais , Bovinos , Pradaria , Herbivoria/fisiologia , Ovinos , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA