Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1358673, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410731

RESUMO

Cadmium (Cd) pollution severely affects plant growth and development, posing risks to human health throughout the food chain. Improved iron (Fe) nutrients could mitigate Cd toxicity in plants, but the regulatory network involving Cd and Fe interplay remains unresolved. Here, a transcription factor gene of alfalfa, MsbHLH115 was verified to respond to iron deficiency and Cd stress. Overexpression of MsbHLH115 enhanced tolerance to Cd stress, showing better growth and less ROS accumulation in Arabidopsis thaliana. Overexpression of MsbHLH115 significantly enhanced Fe and Zn accumulation and did not affect Cd, Mn, and Cu concentration in Arabidopsis. Further investigations revealed that MsbHLH115 up-regulated iron homeostasis regulation genes, ROS-related genes, and metal chelation and detoxification genes, contributing to attenuating Cd toxicity. Y1H, EMSA, and LUC assays confirmed the physical interaction between MsbHLH115 and E-box, which is present in the promoter regions of most of the above-mentioned iron homeostasis regulatory genes. The transient expression experiment showed that MsbHLH115 interacted with MsbHLH121pro. The results suggest that MsbHLH115 may directly regulate the iron-deficiency response system and indirectly regulate the metal detoxification response mechanism, thereby enhancing plant Cd tolerance. In summary, enhancing iron accumulation through transcription factor regulation holds promise for improving plant tolerance to Cd toxicity, and MsbHLH115 is a potential candidate for addressing Cd toxicity issues.

2.
Int J Mol Sci ; 24(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37511038

RESUMO

Iron(Fe) is a trace metal element necessary for plant growth, but excess iron is harmful to plants. Natural resistance-associated macrophage proteins (NRAMPs) are important for divalent metal transport in plants. In this study, we isolated the MsNRAMP2 (MN_547960) gene from alfalfa, the perennial legume forage. The expression of MsNRAMP2 is specifically induced by iron excess. Overexpression of MsNRAMP2 conferred transgenic tobacco tolerance to iron excess, while it conferred yeast sensitivity to excess iron. Together with the MsNRAMP2 gene, MsMYB (MN_547959) expression is induced by excess iron. Y1H indicated that the MsMYB protein could bind to the "CTGTTG" cis element of the MsNRAMP2 promoter. The results indicated that MsNRAMP2 has a function in iron transport and its expression might be regulated by MsMYB. The excess iron tolerance ability enhancement of MsNRAMP2 may be involved in iron transport, sequestration, or redistribution.


Assuntos
Sobrecarga de Ferro , Nicotiana , Nicotiana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Ferro/metabolismo , Medicago sativa/genética , Sobrecarga de Ferro/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
3.
J Transl Med ; 20(1): 563, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36474268

RESUMO

BACKGROUND: Little is known on the tumor microenvironment (TME) response after neoadjuvant chemotherapy (NACT) in gastric cancer on the molecular level. METHODS: Here, we profiled 33,589 cell transcriptomes in 14 samples from 11 gastric cancer patients (4 pre-treatment samples, 4 post-treatment samples and 3 pre-post pairs) using single-cell RNA sequencing (scRNA-seq) to generate the cell atlas. The ligand-receptor-based intercellular communication networks of the single cells were also characterized before and after NACT. RESULTS: Compered to pre-treatment samples, CD4+ T cells (P = 0.018) and CD8+ T cells (P = 0.010) of post-treatment samples were significantly decreased, while endothelial cells and fibroblasts were increased (P = 0.034 and P = 0.005, respectively). No significant difference observed with respect to CD4+ Tregs cells, cycling T cells, B cells, plasma cells, macrophages, monocytes, dendritic cells, and mast cells (P > 0.05). In the unsupervised nonnegative matrix factorization (NMF) analysis, we revealed that there were three transcriptional programs (NMF1, NMF2 and NMF3) shared among these samples. Compared to pre-treatment samples, signature score of NMF1 was significantly downregulated after treatment (P = 0.009), while the NMF2 signature was significantly upregulated after treatment (P = 0.013). The downregulated NMF1 and upregulated NMF2 signatures were both associated with improved overall survival outcomes based on The Cancer Genome Atlas (TCGA) database. Additionally, proangiogenic pathways were activated in tumor and endothelial cells after treatment, indicating that NACT triggers vascular remodeling by cancer cells together with stromal cells. CONCLUSIONS: In conclusion, our study provided transcriptional profiles of TME between pre-treatment and post-treatment for in-depth understanding on the mechanisms of NACT in gastric cancer and empowering the development of potential optimized therapy procedures and novel drugs.


Assuntos
Neoplasias Gástricas , Microambiente Tumoral , Humanos , Terapia Neoadjuvante , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Células Endoteliais
4.
Front Oncol ; 12: 930586, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35912206

RESUMO

Objective: Although the incidence of gastric cancer (GC) is decreasing, GC remains one of the leading cancers in the world. Surgical resection, radiotherapy, chemotherapy, and neoadjuvant therapy have advanced, but patients still face the risk of recurrence and poor prognosis. This study provides new insights for assessment of prognosis and postoperative recurrence of GC patients. Methods: We collected paired cancer and adjacent tissues of 17 patients with early primary GC for bulk transcriptome sequencing. By comparing the transcriptome information of cancer and adjacent cancer, 321 differentially expressed genes (DEGs) were identified. These DEGs were further screened and analyzed with the GC cohort of TCGA to establish a 3-gene prognostic model (PLCL1, PLOD2 and ABCA6). At the same time, the predictive ability of this risk model is validated in multiple public data sets. Besides, the differences in immune cells proportion between the high- and low-risk groups were analyzed by the CIBERSORT algorithm with the Leukocyte signature matrix (LM22) gene signature to reveal the role of the immune microenvironment in the occurrence and development of GC. Results: The model could divide GC samples from TCGA cohorts into two groups with significant differences in overall and disease-free survival. The excellent predictive ability of this model was also validated in multiple other public data sets. The proportion of these immune cells such as resting mast cells, T cells CD4+ memory activated and Macrophages M2 are significantly different between high and low risk group. Conclusion: These three genes used to build the models were validated as biomarkers for predicting tumor recurrence and survival. They may have potential significance for the treatment and diagnosis of patients in the future, and may also promote the development of targeted drugs.

5.
Cell Rep ; 39(3): 110713, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35443163

RESUMO

Diffuse large B cell lymphoma (DLBCL) is one of the most common yet aggressive types of B cell lymphoma and remains incurable in 40% of patients. Herein, we profile the transcriptomes of 94,324 cells from 17 DLBCLs and 3 control samples using single-cell RNA sequencing. Altogether, 73 gene expression programs are identified in malignant cells, demonstrating high intra- and intertumor heterogeneity. Furthermore, 2,754 pairs of suggestive cell-cell interactions are predicted, indicating a complex and highly dynamic tumor microenvironment. Especially for B cell lymphomas, a strong costimulatory CD70-CD27 interaction is predicted between malignant and T cells. Furthermore, coinhibitory signals mediated by TIM3 or TIGIT seem to be the main driving force for T cell exhaustion. Finally, we find that chronic hepatitis B virus infection may have a significant impact on tumor cell survival and immune evasion in DLBCL. Our results provide insights into B cell lymphomagenesis and may facilitate the design of targeted immunotherapy strategies.


Assuntos
Hepatite B Crônica , Linfoma Difuso de Grandes Células B , Humanos , Linfoma Difuso de Grandes Células B/metabolismo , Transcriptoma , Microambiente Tumoral/genética , Sequenciamento do Exoma
6.
Nat Commun ; 13(1): 111, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013309

RESUMO

Invasive micropapillary carcinoma (IMPC) has very high rates of lymphovascular invasion and lymph node metastasis and has been reported in several organs. However, the genomic mechanisms underlying its metastasis are unclear. Here, we perform whole-genome sequencing of tumor cell clusters from primary IMPC and paired axillary lymph node metastases. Cell clusters in multiple lymph node foci arise from a single subclone of the primary tumor. We find evidence that the monoclonal metastatic ancestor in primary IMPC shares high frequency copy-number loss of PRDM16 and IGSF9 and the copy number gain of ALDH2. Immunohistochemistry analysis further shows that low expression of IGSF9 and PRDM16 and high expression of ALDH2 are associated with lymph node metastasis and poor survival of patients with IMPC. We expect these genomic and evolutionary profiles to contribute to the accurate diagnosis of IMPC.


Assuntos
Aldeído-Desidrogenase Mitocondrial/genética , Neoplasias da Mama/genética , Carcinoma Papilar/genética , Proteínas de Ligação a DNA/genética , Imunoglobulinas/genética , Metástase Linfática/genética , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Carcinoma Papilar/metabolismo , Carcinoma Papilar/mortalidade , Carcinoma Papilar/patologia , Proteínas de Ligação a DNA/metabolismo , Evolução Molecular , Feminino , Dosagem de Genes , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoglobulinas/metabolismo , Família Multigênica , Invasividade Neoplásica , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais , Análise de Sobrevida , Fatores de Transcrição/metabolismo
8.
Autophagy ; 10(11): 1895-905, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25483964

RESUMO

Autophagy is a catabolic lysosomal degradation process essential for cellular homeostasis and cell survival. Dysfunctional autophagy has been associated with a wide range of human diseases, e.g., cancer and neurodegenerative diseases. A large number of small molecules that modulate autophagy have been widely used to dissect this process and some of them, e.g., chloroquine (CQ), might be ultimately applied to treat a variety of autophagy-associated human diseases. Here we found that vacuolin-1 potently and reversibly inhibited the fusion between autophagosomes and lysosomes in mammalian cells, thereby inducing the accumulation of autophagosomes. Interestingly, vacuolin-1 was less toxic but at least 10-fold more potent in inhibiting autophagy compared with CQ. Vacuolin-1 treatment also blocked the fusion between endosomes and lysosomes, resulting in a defect in general endosomal-lysosomal degradation. Treatment of cells with vacuolin-1 alkalinized lysosomal pH and decreased lysosomal Ca(2+) content. Besides marginally inhibiting vacuolar ATPase activity, vacuolin-1 treatment markedly activated RAB5A GTPase activity. Expression of a dominant negative mutant of RAB5A or RAB5A knockdown significantly inhibited vacuolin-1-induced autophagosome-lysosome fusion blockage, whereas expression of a constitutive active form of RAB5A suppressed autophagosome-lysosome fusion. These data suggest that vacuolin-1 activates RAB5A to block autophagosome-lysosome fusion. Vacuolin-1 and its analogs present a novel class of drug that can potently and reversibly modulate autophagy.


Assuntos
Autofagia , Compostos Heterocíclicos de 4 ou mais Anéis/química , Lisossomos/metabolismo , Fagossomos/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Adenosina Trifosfatases/metabolismo , Cálcio/metabolismo , Proliferação de Células , Sobrevivência Celular , Cloroquina/química , Endossomos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Células Hep G2 , Homeostase , Humanos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Lentivirus/genética , Metabolismo , Microscopia Eletrônica de Transmissão , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA