Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Food Microbiol ; 411: 110539, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38141354

RESUMO

The aim of this study was to investigate the antibacterial potency of a novel photodynamic inactivation (PDI) system with an enhanced bactericidal ability against Vibrio parahaemolyticus in vitro and in vivo. The synergistically bactericidal action of curcumin (Cur) and L-arginine (L-Arg) was firstly investigated, and then a novel curcumin-mediated PDI coupled with L-Arg was developed. Meanwhile, its potent inactivation mechanism against V. parahaemolyticus and preservation effects on shrimp were explored. Results showed that L-Arg disrupted the cell membrane by binding to membrane phospholipids and disrupting iron homeostasis, which helped curcumin to damage DNA and interrupt protein synthesis. Once irradiated by blue LED, the curcumin-mediated PDI produced the reactive oxygen species (ROS) which reacted with L-Arg to generate NO, and the NO was converted to reactive nitrogen species (RNS) with a strong bactericidal ability by consuming ROS. On this basis, the curcumin-mediated PDI coupled with L-Arg potently killed >8.0 Log CFU/mL with 8 µM curcumin, 0.5 mg/mL L-Arg and 1.2 J/cm2 irradiation. Meanwhile, this PDI also effectively inhibited the colour and pH changes, lipids oxidation and protein degradation of shrimp. Therefore, this study proposes a new potent PDI system to control microbial contamination in the food industry.


Assuntos
Curcumina , Vibrio parahaemolyticus , Curcumina/farmacologia , Espécies Reativas de Oxigênio , Antibacterianos/farmacologia , Alimentos Marinhos
2.
ACS Appl Bio Mater ; 6(12): 5193-5209, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38104272

RESUMO

Water scarcity has become a critical global threat, particularly in arid and underdeveloped regions. However, certain insects and plants have evolved the capability to obtain water from fog under these arid conditions. Bionic fog collection, characterized by passive harvesting, minimal energy requirements, and low maintenance costs, has proven to be an efficient method for water harvesting, offering a sustainable water source. This review introduces two superwettable surfaces, namely, superhydrophilic and superhydrophobic surfaces, detailing their preparation methods and applications in fog collection. The fog collection mechanisms of three typical natural organisms, Namib Desert beetles, spider silk, and cactus, along with their bionic surfaces for fog collection devices, are discussed. Additionally, other biological surfaces exhibiting fog transport properties are presented. The main challenges regarding the fabrication and application of bionic fog collection are summarized. Furthermore, we firmly believe that environmentally friendly, low-cost, and stable fog collection materials or devices hold promising prospects for future applications.


Assuntos
Biônica , Seda , Água/química
3.
Materials (Basel) ; 16(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36614662

RESUMO

Micro-liquid floated gyroscopes are widely used in nuclear submarines, intercontinental missiles, and strategic bombers. The machining accuracy of micro-ball sockets determined the motion accuracy of the rotor. However, it was not easily fabricated by micro-cutting because of the excellent physical and chemical properties of beryllium copper alloy. Here, we presented a linear compensation of tool electrode and a proportional variable thickness method for milling micro-ball sockets in C17200 beryllium copper alloy by micro-electrical discharge machining. The machining parameters were systematically investigated and optimized to achieve high-precision micro-ball sockets when the k value was 0.98 and the initial layer thickness was 0.024 mm. Our method provided a new way to fabricate micro-ball sockets in C17200 with high efficiency for micro-liquid floated gyroscopes.

4.
Materials (Basel) ; 15(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35009352

RESUMO

Zirconia ceramics are widely used in many fields because of their excellent physical and mechanical properties. However, there are some challenges to machine zirconia ceramics with high processing efficiency. In order to optimize parameters for milling zirconia ceramics by polycrystalline diamond tool, finite element method was used to simulate machining process based on Johnson-Cook constitutive model. The effects of spindle speed, feed rate, radial and axial cutting depth on cutting force, tool flank wear and material removal rate were investigated. The results of the simulation experiment were analyzed and optimized by the response surface method. The optimal parameter combination was obtained when the spindle speed, feed rate, radial and axial cutting depth were 8000 r/min, 90.65 mm/min, 0.10 mm and 1.37 mm, respectively. Under these conditions, the cutting force was 234.81 N, the tool flank wear was 33.40 µm when the milling length was 60 mm and the material removal rate was 44.65 mm3/min.

5.
Nanomaterials (Basel) ; 10(8)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752033

RESUMO

A superhydrophobic surface with robust structures on a metallic surface could improve its application in various harsh conditions. Herein, we developed a new strategy to fabricate robust micro-/nanoscale hierarchical structures with electrical discharge machining and electrochemical etching on a titanium substrate. After modification by fluorinated silane, the static water contact angle and slide angle of the surface could reach 162 ± 2° and 4 ± 1°, respectively. The superhydrophobic surfaces showed good corrosion resistance and mechanical stability after scratching with sandpapers. In addition, the superhydrophobic surfaces had good self-cleaning performance even in an acidic environment as well as the potential to be used as guiding tracks in droplet microfluidics and lab-on-a-chip systems. These results are expected to be helpful in designing the surface of liquid float gyroscope parts.

6.
ACS Appl Mater Interfaces ; 10(2): 2174-2184, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29265800

RESUMO

Creating a robust superhydrophobic surface on the conventional engineering materials at mass production is of great importance for a self-cleaning, anti-icing, nonwetting surface and low flow resistance in industrial applications. Herein, we report a roll-to-roll strategy to create durable and robust superhydrophobic surfaces with designed micro-/nanoscale hierarchical structures on many conventional engineering materials by combining electrical discharge machining and coating of carbon nanoparticles, followed by oil penetration and drying. The treated surface shows good superhydrophobic properties with a static water contact angle of 170 ± 2° and slide angle of 3 ± 1°. The treated surface also exhibits good resilience and maintains the performance after being tested in various harsh conditions, including water flushing for several days, sand abrasion, scratching with sandpapers, and corrosive solution. Significantly, the superhydrophobic surfaces also show a high efficiency of self-cleaning properties even after oil contamination during applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA