Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 476: 134972, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38908173

RESUMO

Metal-based nanoparticles (MNPs) are increasingly being released into the marine environment, posing potential environmental risks. However, factors governing the environmental occurrence and distribution of MNPs in bays still lack a comprehensive understanding. Herein, we collected seawater and sediment samples from two adjacent bays (Daya Bay and Honghai Bay, which have similar water qualities), and determined the particle concentrations and sizes of multi-element MNPs (Ti-, Cu-, Zn-, Ag-, Mn-, Pb- and Cr-based NPs) via single particle inductively coupled plasma-mass spectrometry (spICP-MS). The internal circulation in Daya Bay has resulted in an even distribution of MNPs' particle concentrations and sizes in both seawater and sediments, while the terrestrial discharge in Honghai Bay has led to a gradient-decreasing trend in MNPs' concentrations from nearshore to offshore. Moreover, the relatively high abundance of MNPs in Honghai Bay has contributed to 2.35-fold higher environmental risks than Daya Bay. Overall, this study has provided solid evidence on the critical but overlooked factors that have shaped the occurrence and distribution of MNPs, providing new insights for risk management and emission regulation.

2.
Environ Sci Pollut Res Int ; 31(25): 36663-36684, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38750272

RESUMO

The Orne River, a tributary of the Moselle River, was highly impacted by industrial activities for more than one century. Land use along the Orne River is highly contrasted, with local specificity from its source to its junction with the Moselle River. The intense industrial activity left behind tons of steelmaking wastes (SMW) on the land surface and within the Orne riverbed. To assess the sources of particulate Zn and Pb transported as suspended sediment in the Orne River, different sets of samples from likely Zn- and Pb-bearing particle sources within the Orne watershed were collected. Three sets of samples were taken from potential sources representing detrital, urban, and inherited industrial particles. Mineralogy, element contents, and Zn and Pb isotope compositions were obtained to characterize and reveal the fingerprint of each set of samples. Soil samples were collected on distinct geomorphological areas characterized by different soil types and land uses. They all display detrital minerals assigned to the geological background. Urban dusts and steelmaking residues display specific mineral phases (sulfates and iron oxides, respectively). Element compositions present strong discrepancies between the distinct sets of samples. SMWs are particularly enriched in Fe, Zn, and Pb. Concerning isotopic composition, SMWs exhibit δ66Zn values ranging from - 0.67 to 1.66‰. Urban samples display δ66Zn values between - 0.11 and 0.13‰, and soils present δ66Zn values between - 0.24 and 0.47‰. The 206Pb/204Pb ratio was estimated to range from 17.550 to 18.807 for soils, from 17.973 to 18.219 for urban samples, and from 18.313 to 18.826 for SMWs. For each of the three sets of samples (soils, urban, industrial), variations of geochemical fingerprint were observed. For soils, the relatively large variations of Zn and Pb isotopic compositions were attributed to distinct land use and the contribution of atmospheric deposition. For industrial samples, the variations were more intense and may be attributed either to distinct industrial processes in the production of pig iron or to distinct furnace-flume treatment modes. The three sets of samples (urban, industrial, and detrital) could be distinguished based on Zn and Pb contents and isotopes. Finally, this study not only highlighted the sources that released particulate Zn and Pb into the Orne River system, it also demonstrated that urban particles are well defined in terms of Zn and Pb isotopic signatures, and those isotopic signatures could be extrapolated to other case studies.


Assuntos
Monitoramento Ambiental , Chumbo , Rios , Zinco , Chumbo/análise , França , Zinco/análise , Rios/química , Poluentes Químicos da Água/análise , Solo/química
3.
J Environ Sci (China) ; 138: 439-449, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135409

RESUMO

The booming development of rare earth industry and the extensive utilization of its products accompanied by urban development have led to the accelerated accumulation of rare earth elements (REEs) as emerging pollutants in atmospheric environment. In this study, the variation of REEs in PM2.5 with urban (a non-mining city) transformation was investigated through five consecutive years of sample collection. The compositional variability and provenance contribution of REEs in PM2.5 were characterized, and the REEs exposure risks of children and adults via inhalation, ingestion and dermal absorption were also evaluated. The results showed an increase in the total REEs concentration from 46.46 ± 35.16 mg/kg (2017) to 81.22 ± 38.98 mg/kg (2021) over the five-year period, with Ce and La making the largest contribution. The actual increment of industrial and traffic emission source among the three pollution sources was 1.34 ng/m3. Coal combustion source displayed a downward trend. Ingestion was the main exposure pathway for REEs in PM2.5 for both children and adults. Ce contributed the most to the total intake of REEs in PM2.5 among the population, followed by La and Nd. The exposure risks of REEs in PM2.5 in the region were relatively low, but the trend of change was of great concern. It was strongly recommended to strengthen the concern about traffic-related non-exhaust emissions of particulate matter.


Assuntos
Poluentes Atmosféricos , Metais Terras Raras , Adulto , Criança , Humanos , Poluentes Atmosféricos/análise , Material Particulado/análise , Cidades , Monitoramento Ambiental/métodos , Metais Terras Raras/análise , China
4.
Environ Int ; 176: 107990, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37247467

RESUMO

Food security and sustainable development of agriculture has been a key challenge for decades. To support this, nanotechnology in the agricultural sectors increases productivity and food security, while leaving complex environmental negative impacts including pollution of the human food chains by nanoparticles. Here we model the effects of silver nanoparticles (Ag-NPs) in a food chain consisting of soil-grown lettuce Lactuca sativa and snail Achatina fulica. Soil-grown lettuce were exposed to sulfurized Ag-NPs via root or metallic Ag-NPs via leaves before fed to snails. We discover an important biomagnification of silver in snails sourced from plant root uptake, with trophic transfer factors of 2.0-5.9 in soft tissues. NPs shifts from original size (55-68 nm) toward much smaller size (17-26 nm) in snails. Trophic transfer of Ag-NPs reprograms the global metabolic profile by down-regulating or up-regulating metabolites for up to 0.25- or 4.20- fold, respectively, relative to the control. These metabolites control osmoregulation, phospholipid, energy, and amino acid metabolism in snails, reflecting molecular pathways of biomagnification and pontential adverse biological effects on lower trophic levels. Consumption of these Ag-NP contaminated snails causes non-carcinogenic effects on human health. Global public health risks decrease by 72% under foliar Ag-NP application in agriculture or through a reduction in the consumption of snails sourced from root application. The latter strategy is at the expense of domestic economic losses in food security of $177.3 and $58.3 million annually for countries such as Nigeria and Cameroon. Foliar Ag-NP application in nano-agriculture has lower hazard quotient risks on public health than root application to ensure global food safety, as brought forward by the United Nations Sustainable Development Goals.


Assuntos
Nanopartículas Metálicas , Humanos , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Prata/toxicidade , Prata/química , Solo , Agricultura , Lactuca/química
5.
Environ Pollut ; 328: 121600, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37068649

RESUMO

Antimony (Sb) in PM2.5 has attracted close attention as a new air pollutant due to its extensive use in daily life. The identification of antimony sources in PM2.5 by scientific methods is important to control its pollution. In this study, the Sb and other elements concentrations and Pb isotopic compositions in PM2.5 and possible pollution sources (soil, road dust, traffic emission, coal-fired fly ash, local factory emission dust and cement dust) were analyzed. The results showed that the Sb in the PM2.5 samples had seasonal change. The enrichment factors of Sb in PM2.5 samples were all above 100 in four seasons, which indicated anthropogenic pollution. The average value of potential ecological risk index was at extremely high-risk level greater than 320. Based on Pearson correlation coefficient and hierarchical cluster analysis results, the pollution sources of antimony and lead in PM2.5 samples were highly consistent which means that Pb isotopes might be a new and feasible tracer for Sb pollution in air. The sources analysis results based on Pb isotopes indicated that the proportion of Pb and Sb from coal-fired fly ash was the highest in winter (47.7%) and inclined to road dust in spring (34.5%), but it was mainly from traffic emissions in summer and autumn (34.2% and 32.8%). This study showed that Pb isotope tracing can be applied to predict the potential pollution sources, and it was also a feasible substitute for tracing Sb pollution in PM2.5.


Assuntos
Poluentes Atmosféricos , Material Particulado , Material Particulado/análise , Antimônio/análise , Cinza de Carvão/análise , Chumbo/análise , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Poeira/análise , Estações do Ano , Isótopos/análise , Carvão Mineral/análise
6.
Environ Sci Technol ; 56(3): 1763-1770, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35005907

RESUMO

Nanoparticulate mercury (Hg-NPs) are ubiquitous in nature. However, the lack of data on their concentration in soils impedes reliable risk assessments. This is due to the analytical difficulties resulting from low ambient Hg concentrations and background interferences of heterogeneous soil components. Here, coupled to single particle inductively coupled plasma-mass spectrometry (spICP-MS), a standardized protocol was developed for extraction and quantification of Hg-NPs in natural soils with a wide range of properties. High particle number-, particle mass-, and total mass-based recoveries were obtained for spiked HgS-NPs (74-120%). Indigenous Hg-NPs across soils were within 107-1011 NPs g-1, corresponding to 3-40% of total Hg on a mass basis. Metacinnabar was the primary Hg species in extracted samples from the Wanshan mercury mining site, as characterized by X-ray absorption spectroscopy and transmission electron microscopy. In agreement with the spICP-MS analysis, electron microscopy revealed comparable size distribution for nanoparticles larger than 27 nm. These indigenous Hg-NPs contributed to 5-65% of the measured methylmercury in soils. This work paves the way for experimental determinations of indigenous Hg-NPs in natural soils, which is critical to understand the biogeochemical cycling of mercury and thereby the methylation processes governing the public exposure to methylmercury.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes do Solo , Mercúrio/análise , Mineração , Solo/química , Poluentes do Solo/análise
7.
NPJ Sci Food ; 5(1): 18, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238934

RESUMO

Identification of geographical origin is of great importance for protecting the authenticity of valuable agri-food products with designated origins. In this study, a robust and accurate analytical method that could authenticate the geographical origin of Geographical Indication (GI) products was developed. The method was based on elemental profiling using inductively coupled plasma mass spectrometry (ICP-MS) in combination with machine learning techniques for model building and feature selection. The method successfully predicted and classified six varieties of Chinese GI rice. The elemental profiles of 131 rice samples were determined, and two machine learning algorithms were implemented, support vector machines (SVM) and random forest (RF), together with the feature selection algorithm Relief. Prediction accuracy of 100% was achieved by both Relief-SVM and Relief-RF models, using only four elements (Al, B, Rb, and Na). The methodology and knowledge from this study could be used to develop reliable methods for tracing geographical origins and controlling fraudulent labeling of diverse high-value agri-food products.

8.
Rapid Commun Mass Spectrom ; 34(8): e8690, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31908079

RESUMO

RATIONALE: An inductively coupled plasma tandem mass spectrometry (ICP-MS/MS) instrument can be developed to determine 87 Sr/86 Sr ratios with an external precision better than 0.05% relative standard deviation (RSD) in "mass shift" mode without prior Sr purification. Previous studies suggested using CH3 F, N2 O, and SF6 as reaction gases for this method because a better reaction rate can be achieved with Sr+ than with O2 in the reaction cell. However, these gases are not commonly used in general chemistry laboratories, and processes using these gases are difficult to implement quickly due to regulations. We aim to develop a rapid method that can be applied to many samples for the accurate determination of 87 Sr/86 Sr isotope ratios with precision below 0.1% RSD (or approximately to the fourth decimal place). METHODS: We evaluated the accuracy and precision of 87 Sr/86 Sr ratios in certified reference materials and different rock types determined using ICP-MS/MS with O2 as the reaction gas in comparison with those determined using the multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) method. RESULTS: This study showed that by using the ICP-MS/MS method, the 87 Sr/86 Sr ratios of BCR-2 and BHVO-2 do not vary significantly with and without prior Sr purification; when the Sr concentration of the measured solution is within the range of 60-350 ng/mL, there is no significant effect on the measured 87 Sr/86 Sr ratios. The results also showed that the 87 Sr/86 Sr ratios of 23 different rock types measured by ICP-MS/MS and MC-ICP-MS methods agree very well. CONCLUSIONS: The precision of the 87 Sr/86 Sr ratio measured using ICP-MS/MS varies between 0.0001 and 0.0019 (2SD). This precision is less than that of the MC-ICP-MS method but is sufficient for certain applications, such as identifying 87 Sr/86 Sr ratios in different rock types. These results suggest that the developed ICP-MS/MS method has the potential for future studies involving the identification of Sr sources.

9.
J AOAC Int ; 102(4): 1199-1204, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30736867

RESUMO

Background: A fast and sensitive method for the simultaneous analysis of iodine and bromine species in infant formula was developed using HPLC-inductively coupled plasma-MS (HPLC-ICP-MS). Method: To determine the four halogen species [iodide (I-), iodate (IO3-), bromide (Br-), and bromate (BrO3-)] in a milk-based Standard Reference Material and four commercially available infant formula products. Results: The four halogen species were baseline separated in less than 6.5 min using an anion exchange resin column and 5.0 mM NaH2PO4 / 15.0 mM Na2SO4 / 5.0 mM EDTA (pH 7.0) mobile phase. Following separation, the halogen species were detected by measuring m/z 79 for Br and m/z 127 for I using a triple quadrupole-ICP-MS. The instrument was operated in single quadrupole mode with helium cell gas. Excellent linearity (R = 0.9999 or better) was obtained for all four species with calibration standards ranging from 0 to 100 ppb. The LOD for I-, IO3-, Br-, and BrO3- were all less than 0.67 µg/kg. To test the suitability of the method for the accurate determination of low concentrations of the four species in infant formula samples, a spike recovery test was carried out at 20 and 40 µg/kg into the diluted infant formula samples. Conclusions: Total elemental determinations of iodine and bromine were also performed using the triple quadrupole-ICP-MS without HPLC.


Assuntos
Bromatos/análise , Brometos/análise , Fórmulas Infantis/análise , Iodatos/análise , Iodetos/análise , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Lactente , Limite de Detecção , Espectrometria de Massas/métodos
10.
Talanta ; 114: 103-9, 2013 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-23953448

RESUMO

Accurate characterization of the stable isotope composition of Cu and Zn in major global mineral dust sources and in aerosols is central to the application of these isotope systems to the studies of global geochemical processes and cycles. We test here for the first time Cu and Zn isotope ratios within a well-defined source-receptor setting on the continent-ocean interface and determine the isotope composition of (i) bulk surface soil dust samples from the Sahel region, (ii) individual size fractions of surface dust samples from the Taklimakan Desert, and (iii) aerosols collected in the equatorial eastern North Atlantic region. This is achieved reducing the blank contribution during the ion exchange step using small resin and acid volumes and using a second ion exchange passage to purify the Cu fraction. We find no significant correlation between size fractions and isotope ratios in the two samples analyzed from the Taklimakan Desert. Mass balance calculations suggest that isotope ratios of bulk samples are within the analytical precision of the <4 µm size fraction and can be used to characterize atmospheric long range transport of Cu and Zn in mineral dust from the Taklimakan Desert. The <1 µm size fractions of two aerosol samples collected over the equatorial eastern North Atlantic region have Cu and Zn isotope ratios that are different to Sahel surface soil dust suggesting important non-crustal sources, in line with calculated enrichment factors, and possibly of anthropogenic origin. Using previously reported δ(66)Zn values for anthropogenic emission from Europe, preliminary calculations suggest that up to 55% of Zn arriving at the sampling points in the equatorial eastern North Atlantic region could be of anthropogenic origin.


Assuntos
Poluentes Atmosféricos/análise , Cobre/análise , Poeira/análise , Zinco/análise , Aerossóis , África , Oceano Atlântico , Monitoramento Ambiental , Isótopos/análise , Minerais/análise
11.
J Exp Bot ; 62(6): 2169-78, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21193582

RESUMO

Stable isotope signatures of Zn have shown great promise in elucidating changes in uptake and translocation mechanisms of this metal in plants during environmental changes. Here this potential was tested by investigating the effect of high Zn concentrations on the isotopic fractionation patterns of Phragmites australis (Cav.) Trin. ex Steud. Plants were grown for 40 d in a nutritive solution containing 3.2 µM (sufficient) or 2 mM (toxic) Zn. The Zn isotopic composition of roots, rhizomes, shoots, and leaves was analysed. Stems and leaves were sampled at different heights to evaluate the effect of long-distance transport on Zn fractionation. During Zn sufficiency, roots, rhizomes, and shoots were isotopically heavy (δ(66)Zn(JMC Lyon)=0.2‰) while the youngest leaves were isotopically light (-0.5‰). During Zn excess, roots were still isotopically heavier (δ(66)Zn=0.5‰) and the rest of the plant was isotopically light (up to -0.5‰). The enrichment of heavy isotopes at the roots was attributed to Zn uptake mediated by transporter proteins under Zn-sufficient conditions and to chelation and compartmentation in Zn excess. The isotopically lighter Zn in shoots and leaves is consistent with long-distance root to shoot transport. The tolerance response of P. australis increased the range of Zn fractionation within the plant and with respect to the environment.


Assuntos
Poaceae/metabolismo , Zinco/metabolismo , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Poaceae/efeitos dos fármacos , Poaceae/crescimento & desenvolvimento , Zinco/toxicidade , Isótopos de Zinco/metabolismo
12.
Environ Monit Assess ; 170(1-4): 331-43, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19904623

RESUMO

In this study, air samples were taken using a BioSampler and gelatin filters from six sites in Beijing: office, hospital, student dormitory, train station, subway, and a commercial street. Dust samples were also collected using a surface sampler from the same environments. Limulus amoebocyte lysate (LAL) and Glucatell assays were used to quantify sample endotoxin and (1,3)-ß-d-glucan concentration levels, respectively. Enzyme-linked immunosorbent assay (ELISA) was used to measure the dust mite allergens (Der p 1 and Der f 1). Ultrafine particle and lead concentrations in these sampling sites were also measured using P-Trak and atomic absorption spectrometer, respectively. Analysis of variance (ANOVA) and linear regression analysis were used to analyze the concentration data. Higher culturable bacteria (12,639 CFU/m3) and fungi (1,806 CFU/m3) concentrations were observed for the train station and the subway system, respectively. For the rest of sampling sites, their concentrations were comparable to those found in western countries, ranging from 990 to 2,276 CFU/m3 for bacteria, and from 119 to 269 CFU/m3 for fungi. ANOVA analysis indicated that there were statistically significant differences between the culturable bacterial and fungal concentration levels obtained for different sites (p value=0.0001 and 0.0047). As for dust allergens, endotoxin, and (1,3)-ß-D-glucan, their concentrations also seemed to be comparable to those found in the developed countries. Airborne allergen concentrations ranged from 16 to 68 ng/m3. The dust-borne allergen concentration was observed to range from 0.063 to 0.327 ng/mg. As for endotoxin, the highest airborne concentration of 25.24 ng/m3 was observed for the commercial street, and others ranged from 0.0427 to 0.1259 ng/m3. And dust-borne endotoxin concentration ranged from 58.83 to 6,427.4 ng/mg. For (1,3)-ß-D-glucan, the airborne concentration ranged from 0.02 to 1.2 ng/m3. Linear regression analyses showed that there existed poor correlations between those in airborne and dust-borne states (R2=0.002~0.43). In our study, the lowest ultrafine particle concentration about 5,203 pt/cm3 was observed in office and the highest was observed at the train station, up to 32,783 pt/cm3. Lead concentration was shown to range from 80 to 170 ng/mg with the highest also observed at the train station. The information provided in this work can be used to learn the general situation of relevant health risks in Beijing. And the results here suggested that when characterizing exposure both airborne and dust-borne as well as the environments should be considered.


Assuntos
Poluentes Atmosféricos/análise , Exposição por Inalação/análise , Chumbo/análise , Material Particulado/análise , Microbiologia do Ar , Poluição do Ar/estatística & dados numéricos , Alérgenos/análise , Atmosfera/química , Endotoxinas/análise , Proteoglicanas , Medição de Risco , beta-Glucanas/análise
13.
J Environ Monit ; 11(11): 1993-2001, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19890556

RESUMO

At 14:28 on 12 May 2008, Sichuan Province of China suffered a devastating earthquake measuring 8.0 on the Richter scale with more than 80 000 human lives lost and millions displaced. With inadequate shelter, poor access to health services, and disrupted ecology, the survivors were at enormous risk of infectious disease outbreaks. This work, believed to be unprecedented, was carried out to contain a possible outbreak through onsite monitoring of airborne biological agents in the high-risk areas. In such a mission, a mobile laboratory was developed using a customized vehicle along with state-of-art bioaerosol and molecular equipment and tools, and deployed to Sichuan 11 days after the earthquake. Using a high volume bioaerosol sampler (RCS High Flow) and Button Inhalable Aerosol Sampler equipped with gelatin filters, a total of 55 air samples, among which are 28 filter samples, were collected from rubble, medical centers, and camps of refugees, troops and rescue workers between 23 May and 9 June, 2008. After pre-treatment of the air samples, quantitative polymerase chain reaction (qPCR), gel electrophoresis, limulus amebocyte lysate (LAL) assay and enzyme-linked immunosorbent assay (ELISA) were applied to detect infectious agents and to quantify environmental toxins and allergens. The results revealed that, while high levels of endotoxin (180 approximately 975 ng/m3) and (1,3)-beta-d-glucans (11 approximately 100 ng/m3) were observed, infectious agents such as Bacillus anthracis, Bordetella pertussis, Neisseria meningitidis, Mycobacterium tuberculosis, influenza A virus, bird flu virus (H5N1), enteric viruses, and Meningococcal meningitis were found below their detection limits. The total bacterial concentrations were found to range from 250 to 2.5 x 10(5) DNA copies/L. Aspergillus fumigatus (Asp f 1) and dust mite allergens (Der p 1 and Der f 1) were also found below their detection limits.


Assuntos
Microbiologia do Ar , Alérgenos/análise , Terremotos , Endotoxinas/análise , Monitoramento Ambiental/métodos , Animais , China , Surtos de Doenças/prevenção & controle , Poeira/análise , Eletroforese em Gel de Poliacrilamida , Exposição Ambiental/análise , Monitoramento Ambiental/instrumentação , Ensaio de Imunoadsorção Enzimática , Humanos , Teste do Limulus , Ácaros/imunologia , Reação em Cadeia da Polimerase , Saúde Pública , beta-Glucanas/análise
14.
J Hazard Mater ; 170(2-3): 570-7, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19500903

RESUMO

Some farmland in Shenyang had been irrigated with industrial wastewater since 1962. Although wastewater irrigation was ceased in 1992, soil had been heavily polluted by heavy metals, especially by Cd. For better understanding processes of soil-heavy metal interactions, in particular, the mobility and retention mechanism of heavy metal in soil, a study on the transport and fate of heavy metals in soil zones from Shenyang suburb was carried out by column leaching tests in laboratory. Breakthrough curves of Pb, Cd, Cr(VI) and As(V) fitted by Thomas model and Yoon-Nelson model. The results of fitted breakthrough curves showed that transport rates of the four heavy metals in the soil zones followed the order: Cr(VI)>As(V)>Cd>Pb, which indicated that Cr(VI) was much more mobile, and Pb was comparatively unmovable. Cr in effluents and As were almost entirely Cr(VI) and As(V), respectively, and no Cr(III) and As(III) was ever detected during the leaching tests. The contents of Pb, Cd, Cr and As in leached soils decreased in the order of Pb>Cd>Cr>As, which suggested that adsorption ability of soil to Pb was greatest and to As was least. The methods of selective sequential extraction and solvent extraction were used to determine the fractions of Pb, Cd, Cr, As and the valent states of Cr, As [Cr(VI) or Cr(III), As(V) or As(III)] in original soils and in leached soils. After leaching tests, the relative and absolute concentrations of exchangeable, carbonate, Fe-Mn oxide and organic fraction of each element were all increased, which enhanced the potential mobility and risk of Pb, Cd, Cr and As to soil/groundwater system. The relative concentrations of Cr(III) and As(III) in different depth of the soil zones after leaching tests were increased by about 6.0% and 5.6%, respectively. Cr(III) and As(III) tended to be adsorbed by soils, which reduced the mobility of them into groundwater.


Assuntos
Poluição Ambiental/análise , Metais Pesados/análise , Poluentes do Solo/análise , Solo/análise , Agricultura , Algoritmos , Silicatos de Alumínio/análise , Arsênio/análise , Cádmio/análise , China , Cromo/análise , Argila , Cinética , Chumbo/análise , Oxirredução , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA