Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 51(23): 9116-9126, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35666657

RESUMO

The oxygen evolution reaction (OER), as the rate-determining step of electrochemical water splitting, is extremely crucial, and thus it is a requisite to engineer feasible and effective electrocatalysts to shrink the reaction energy barrier and accelerate the reaction. Herein, monodisperse Mn3O4 nanoparticles on a PANI substrate were synthesized by polymerization and in situ oxidation. Combining Mn3O4 nanoparticles and PANI fibers can not only maximize the strong coupling effect and synergistic effect but also construct a well-defined three-dimensional structure with extensive exposed active sites, where the permeation and adherence of the electrolyte are made exceedingly feasible, thus displaying excellent OER activity. Benefiting from the outstanding structural stability, the resulting Mn3O4/PANI/NF is able to deliver a low overpotential of 262 mV at a current density of 10 mA cm-2, which outperforms the commercial RuO2 catalyst (275 mV) as well as presently reported representative Mn-based and PANI-based electrocatalysts and state-of-the-art OER electrocatalysts. The synthetic method for Mn3O4/PANI not only provides a brand-new avenue for the rational design of inorganic material/conductive polymer composites but also broadens the understanding of the mechanism of Mn-based catalysts for highly enhanced OER.

2.
Chemistry ; 27(35): 9044-9053, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33861489

RESUMO

Oxygen evolution reaction (OER) is considered as a critical half-cell reaction of water splitting, the kinetics of which is sluggish even not favored, thus requiring highly active electrocatalysts to shrink the reaction energy barrier and improve the energy conversion efficiency. In this study, In-situ generated trimetallic molybdate nanoflowers on Ni foam by a straightforward and time-saving solvothermal method assisted with microwave, not only bring synergistic effect into full play between multiple metals, but also construct a well-defined nanoflower-like structure accompanied by larger specific area (273.3 m2 g-1 ) and smaller size than the pristine NiMoO4 . The resulting Ni0.9 Al0.1 MoO4 -NF requires a relatively low overpotential of 266 mV for OER at 10 mA cm-2 , which outperforms commercial RuO2 catalysts (274 mV). Such excellent performance compares favorably to most previously reported NiMoO4 -based electrocatalysts for OER. This work not only supplies a facile method to construct a well-defined nanoflower-like structure on foam, but also broadens our horizons into the mechanism of OER in alkaline conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA