Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
bioRxiv ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38948706

RESUMO

Early diagnosis and biomarker discovery to bolster the therapeutic pipeline for Parkinson's disease (PD) are urgently needed. In this study, we leverage the large-scale whole-blood total RNA-seq dataset from the Accelerating Medicine Partnership in Parkinson's Disease (AMP PD) program to identify PD-associated RNAs, including both known genes and novel circular RNAs (circRNA) and enhancer RNAs (eRNAs). There were 1,111 significant marker RNAs, including 491 genes, 599 eRNAs, and 21 circRNAs, that were first discovered in the PPMI cohort (FDR < 0.05) and confirmed in the PDBP/BioFIND cohorts (nominal p < 0.05). Functional enrichment analysis showed that the PD-associated genes are involved in neutrophil activation and degranulation, as well as the TNF-alpha signaling pathway. We further compare the PD-associated genes in blood with those in post-mortem brain dopamine neurons in our BRAINcode cohort. 44 genes show significant changes with the same direction in both PD brain neurons and PD blood, including neuroinflammation-associated genes IKBIP, CXCR2, and NFKBIB. Finally, we built a novel multi-omics machine learning model to predict PD diagnosis with high performance (AUC = 0.89), which was superior to previous studies and might aid the decision-making for PD diagnosis in clinical practice. In summary, this study delineates a wide spectrum of the known and novel RNAs linked to PD and are detectable in circulating blood cells in a harmonized, large-scale dataset. It provides a generally useful computational framework for further biomarker development and early disease prediction.

2.
Alzheimers Dement ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946666

RESUMO

INTRODUCTION: Vervets are non-human primates that share high genetic homology with humans and develop amyloid beta (Aß) pathology with aging. We expand current knowledge by examining Aß pathology, aging, cognition, and biomarker proteomics. METHODS: Amyloid immunoreactivity in the frontal cortex and temporal cortex/hippocampal regions from archived vervet brain samples ranging from young adulthood to old age was quantified. We also obtained cognitive scores, plasma samples, and cerebrospinal fluid (CSF) samples in additional animals. Plasma and CSF proteins were quantified with platforms utilizing human antibodies. RESULTS: We found age-related increases in Aß deposition in both brain regions. Bioinformatic analyses assessed associations between biomarkers and age, sex, cognition, and CSF Aß levels, revealing changes in proteins related to immune-related inflammation, metabolism, and cellular processes. DISCUSSION: Vervets are an effective model of aging and early-stage Alzheimer's disease, and we provide translational biomarker data that both align with previous results in humans and provide a basis for future investigations. HIGHLIGHTS: We found changes in immune and metabolic plasma biomarkers associated with age and cognition. Cerebrospinal fluid (CSF) biomarkers revealed changes in cell signaling indicative of adaptative processes. TNFRSF19 (TROY) and Artemin co-localize with Alzheimer's disease pathology. Vervets are a relevant model for translational studies of early-stage Alzheimer's disease.

3.
bioRxiv ; 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38559190

RESUMO

Age is the strongest risk factor for developing Alzheimer's disease, the most common neurodegenerative disorder. However, the mechanisms connecting advancing age to neurodegeneration in Alzheimer's disease are incompletely understood. We conducted an unbiased, genome-scale, forward genetic screen for age-associated neurodegeneration in Drosophila to identify the underlying biological processes required for maintenance of aging neurons. To connect genetic screen hits to Alzheimer's disease pathways, we measured proteomics, phosphoproteomics, and metabolomics in Drosophila models of Alzheimer's disease. We further identified Alzheimer's disease human genetic variants that modify expression in disease-vulnerable neurons. Through multi-omic, multi-species network integration of these data, we identified relationships between screen hits and tau-mediated neurotoxicity. Furthermore, we computationally and experimentally identified relationships between screen hits and DNA damage in Drosophila and human iPSC-derived neural progenitor cells. Our work identifies candidate pathways that could be targeted to attenuate the effects of age on neurodegeneration and Alzheimer's disease.

4.
Genome Res ; 34(4): 590-605, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38599684

RESUMO

Missense mutations in the gene encoding the microtubule-associated protein TAU (current and approved symbol is MAPT) cause autosomal dominant forms of frontotemporal dementia. Multiple models of frontotemporal dementia based on transgenic expression of human TAU in experimental model organisms, including Drosophila, have been described. These models replicate key features of the human disease but do not faithfully recreate the genetic context of the human disorder. Here we use CRISPR-Cas-mediated gene editing to model frontotemporal dementia caused by the TAU P301L mutation by creating the orthologous mutation, P251L, in the endogenous Drosophila tau gene. Flies heterozygous or homozygous for Tau P251L display age-dependent neurodegeneration, display metabolic defects, and accumulate DNA damage in affected neurons. To understand the molecular events promoting neuronal dysfunction and death in knock-in flies, we performed single-cell RNA sequencing on approximately 130,000 cells from brains of Tau P251L mutant and control flies. We found that expression of disease-associated mutant tau altered gene expression cell autonomously in all neuronal cell types identified. Gene expression was also altered in glial cells, suggestive of non-cell-autonomous regulation. Cell signaling pathways, including glial-neuronal signaling, were broadly dysregulated as were brain region and cell type-specific protein interaction networks and gene regulatory programs. In summary, we present here a genetic model of tauopathy that faithfully recapitulates the genetic context and phenotypic features of the human disease, and use the results of comprehensive single-cell sequencing analysis to outline pathways of neurotoxicity and highlight the potential role of non-cell-autonomous changes in glia.


Assuntos
Modelos Animais de Doenças , Proteínas de Drosophila , Neuroglia , Neurônios , Tauopatias , Proteínas tau , Animais , Neuroglia/metabolismo , Proteínas tau/metabolismo , Proteínas tau/genética , Neurônios/metabolismo , Neurônios/patologia , Tauopatias/genética , Tauopatias/metabolismo , Tauopatias/patologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , Transdução de Sinais , Drosophila melanogaster/genética , Técnicas de Introdução de Genes , Drosophila/genética , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Animais Geneticamente Modificados , Edição de Genes , Sistemas CRISPR-Cas
5.
bioRxiv ; 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38352559

RESUMO

Missense mutations in the gene encoding the microtubule-associated protein tau cause autosomal dominant forms of frontotemporal dementia. Multiple models of frontotemporal dementia based on transgenic expression of human tau in experimental model organisms, including Drosophila, have been described. These models replicate key features of the human disease, but do not faithfully recreate the genetic context of the human disorder. Here we use CRISPR-Cas mediated gene editing to model frontotemporal dementia caused by the tau P301L mutation by creating the orthologous mutation, P251L, in the endogenous Drosophila tau gene. Flies heterozygous or homozygous for tau P251L display age-dependent neurodegeneration, metabolic defects and accumulate DNA damage in affected neurons. To understand the molecular events promoting neuronal dysfunction and death in knock-in flies we performed single-cell RNA sequencing on approximately 130,000 cells from brains of tau P251L mutant and control flies. We found that expression of disease-associated mutant tau altered gene expression cell autonomously in all neuronal cell types identified and non-cell autonomously in glial cells. Cell signaling pathways, including glial-neuronal signaling, were broadly dysregulated as were brain region and cell-type specific protein interaction networks and gene regulatory programs. In summary, we present here a genetic model of tauopathy, which faithfully recapitulates the genetic context and phenotypic features of the human disease and use the results of comprehensive single cell sequencing analysis to outline pathways of neurotoxicity and highlight the role of non-cell autonomous changes in glia.

6.
Brief Bioinform ; 24(6)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37930031

RESUMO

Reconstructing the full-length sequence of extrachromosomal circular DNA (eccDNA) from short sequencing reads has proved challenging given the similarity of eccDNAs and their corresponding linear DNAs. Previous sequencing methods were unable to achieve high-throughput detection of full-length eccDNAs. Herein, a novel algorithm was developed, called Full-Length eccDNA Detection (FLED), to reconstruct the sequence of eccDNAs based on the strategy that combined rolling circle amplification and nanopore long-reads sequencing technology. Seven human epithelial and cancer cell line samples were analyzed by FLED and over 5000 full-length eccDNAs were identified per sample. The structures of identified eccDNAs were validated by both Polymerase Chain Reaction (PCR) and Sanger sequencing. Compared to other published nanopore-based eccDNA detectors, FLED exhibited higher sensitivity. In cancer cell lines, the genes overlapped with eccDNA regions were enriched in cancer-related pathways and cis-regulatory elements can be predicted in the upstream or downstream of intact genes on eccDNA molecules, and the expressions of these cancer-related genes were dysregulated in tumor cell lines, indicating the regulatory potency of eccDNAs in biological processes. The proposed method takes advantage of nanopore long reads and enables unbiased reconstruction of full-length eccDNA sequences. FLED is implemented using Python3 which is freely available on GitHub (https://github.com/FuyuLi/FLED).


Assuntos
DNA Circular , DNA , Humanos , DNA/genética , Reação em Cadeia da Polimerase , Linhagem Celular
7.
Nat Commun ; 14(1): 7034, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923712

RESUMO

Aß peptides derived from the amyloid precursor protein (APP) have been strongly implicated in the pathogenesis of Alzheimer's disease. However, the normal function of APP and the importance of that role in neurodegenerative disease is less clear. We recover the Drosophila ortholog of APP, Appl, in an unbiased forward genetic screen for neurodegeneration mutants. We perform comprehensive single cell transcriptional and proteomic studies of Appl mutant flies to investigate Appl function in the aging brain. We find an unexpected role for Appl in control of multiple cellular pathways, including translation, mitochondrial function, nucleic acid and lipid metabolism, cellular signaling and proteostasis. We mechanistically define a role for Appl in regulating autophagy through TGFß signaling and document the broader relevance of our findings using mouse genetic, human iPSC and in vivo tauopathy models. Our results demonstrate a conserved role for APP in controlling age-dependent proteostasis with plausible relevance to Alzheimer's disease.


Assuntos
Doença de Alzheimer , Proteínas de Drosophila , Doenças Neurodegenerativas , Animais , Humanos , Camundongos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Doença de Alzheimer/metabolismo , Proteostase , Proteômica , Envelhecimento/genética , Drosophila/genética , Drosophila/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
8.
Nat Commun ; 14(1): 5327, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723137

RESUMO

Little is known about circular RNAs (circRNAs) in specific brain cells and human neuropsychiatric disease. Here, we systematically identify over 11,039 circRNAs expressed in vulnerable dopamine and pyramidal neurons laser-captured from 190 human brains and non-neuronal cells using ultra-deep, total RNA sequencing. 1526 and 3308 circRNAs are custom-tailored to the cell identity of dopamine and pyramidal neurons and enriched in synapse pathways. 29% of Parkinson's and 12% of Alzheimer's disease-associated genes produced validated circRNAs. circDNAJC6, which is transcribed from a juvenile-onset Parkinson's gene, is already dysregulated during prodromal, onset stages of common Parkinson's disease neuropathology. Globally, addiction-associated genes preferentially produce circRNAs in dopamine neurons, autism-associated genes in pyramidal neurons, and cancers in non-neuronal cells. This study shows that circular RNAs in the human brain are tailored to neuron identity and implicate circRNA-regulated synaptic specialization in neuropsychiatric diseases.


Assuntos
Doença de Parkinson , RNA Circular , Humanos , RNA Circular/genética , Dopamina , Encéfalo , Neurônios Dopaminérgicos
9.
Nat Genet ; 55(7): 1116-1125, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37386247

RESUMO

Glaucoma, a leading cause of irreversible blindness, is a highly heritable human disease. Previous genome-wide association studies have identified over 100 loci for the most common form, primary open-angle glaucoma. Two key glaucoma-associated traits also show high heritability: intraocular pressure and optic nerve head excavation damage quantified as the vertical cup-to-disc ratio. Here, since much of glaucoma heritability remains unexplained, we conducted a large-scale multitrait genome-wide association study in participants of European ancestry combining primary open-angle glaucoma and its two associated traits (total sample size over 600,000) to substantially improve genetic discovery power (263 loci). We further increased our power by then employing a multiancestry approach, which increased the number of independent risk loci to 312, with the vast majority replicating in a large independent cohort from 23andMe, Inc. (total sample size over 2.8 million; 296 loci replicated at P < 0.05, 240 after Bonferroni correction). Leveraging multiomics datasets, we identified many potential druggable genes, including neuro-protection targets likely to act via the optic nerve, a key advance for glaucoma because all existing drugs only target intraocular pressure. We further used Mendelian randomization and genetic correlation-based approaches to identify novel links to other complex traits, including immune-related diseases such as multiple sclerosis and systemic lupus erythematosus.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Humanos , Estudo de Associação Genômica Ampla , Glaucoma de Ângulo Aberto/genética , Glaucoma/genética , Pressão Intraocular/genética , Nervo Óptico , Polimorfismo de Nucleotídeo Único/genética , Predisposição Genética para Doença
10.
bioRxiv ; 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37066229

RESUMO

Little is known about circular RNAs (circRNAs) in specific brain cells and human neuropsychiatric disease. Here, we systematically identified over 11,039 circRNAs expressed in vulnerable dopamine and pyramidal neurons laser-captured from 190 human brains and non-neuronal cells using ultra-deep, total RNA sequencing. 1,526 and 3,308 circRNAs were custom-tailored to the cell identity of dopamine and pyramidal neurons and enriched in synapse pathways. 88% of Parkinson's and 80% of Alzheimer's disease-associated genes produced circRNAs. circDNAJC6, produced from a juvenile-onset Parkinson's gene, was already dysregulated during prodromal, onset stages of common Parkinson's disease neuropathology. Globally, addiction-associated genes preferentially produced circRNAs in dopamine neurons, autism-associated genes in pyramidal neurons, and cancers in non-neuronal cells. This study shows that circular RNAs in the human brain are tailored to neuron identity and implicate circRNA- regulated synaptic specialization in neuropsychiatric diseases.

11.
Sleep ; 46(3)2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36525587

RESUMO

STUDY OBJECTIVES: Despite its association with severe health conditions, the etiology of sleep apnea (SA) remains understudied. This study sought to identify genetic variants robustly associated with SA risk. METHODS: We performed a genome-wide association study (GWAS) meta-analysis of SA across five cohorts (NTotal = 523 366), followed by a multi-trait analysis of GWAS (multi-trait analysis of genome-wide association summary statistics [MTAG]) to boost power, leveraging the high genetic correlation between SA and snoring. We then adjusted our results for the genetic effects of body mass index (BMI) using multi-trait-based conditional and joint analysis (mtCOJO) and sought replication of lead hits in a large cohort of participants from 23andMe, Inc (NTotal = 1 477 352; Ncases = 175 522). We also explored genetic correlations with other complex traits and performed a phenome-wide screen for causally associated phenotypes using the latent causal variable method. RESULTS: Our SA meta-analysis identified five independent variants with evidence of association beyond genome-wide significance. After adjustment for BMI, only one genome-wide significant variant was identified. MTAG analyses uncovered 49 significant independent loci associated with SA risk. Twenty-nine variants were replicated in the 23andMe GWAS adjusting for BMI. We observed genetic correlations with several complex traits, including multisite chronic pain, diabetes, eye disorders, high blood pressure, osteoarthritis, chronic obstructive pulmonary disease, and BMI-associated conditions. CONCLUSION: Our study uncovered multiple genetic loci associated with SA risk, thus increasing our understanding of the etiology of this condition and its relationship with other complex traits.


Assuntos
Estudo de Associação Genômica Ampla , Síndromes da Apneia do Sono , Humanos , Estudo de Associação Genômica Ampla/métodos , Ronco/complicações , Ronco/genética , Fenótipo , Genômica , Polimorfismo de Nucleotídeo Único/genética
12.
Cell ; 185(12): 2035-2056.e33, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35688132

RESUMO

Alpha-synuclein (αS) is a conformationally plastic protein that reversibly binds to cellular membranes. It aggregates and is genetically linked to Parkinson's disease (PD). Here, we show that αS directly modulates processing bodies (P-bodies), membraneless organelles that function in mRNA turnover and storage. The N terminus of αS, but not other synucleins, dictates mutually exclusive binding either to cellular membranes or to P-bodies in the cytosol. αS associates with multiple decapping proteins in close proximity on the Edc4 scaffold. As αS pathologically accumulates, aberrant interaction with Edc4 occurs at the expense of physiologic decapping-module interactions. mRNA decay kinetics within PD-relevant pathways are correspondingly disrupted in PD patient neurons and brain. Genetic modulation of P-body components alters αS toxicity, and human genetic analysis lends support to the disease-relevance of these interactions. Beyond revealing an unexpected aspect of αS function and pathology, our data highlight the versatility of conformationally plastic proteins with high intrinsic disorder.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , Doença de Parkinson/metabolismo , Corpos de Processamento , Estabilidade de RNA , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
13.
Nucleic Acids Res ; 50(W1): W782-W790, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35610053

RESUMO

Human complex traits and common diseases show tissue- and cell-type- specificity. Recently, single-cell RNA sequencing (scRNA-seq) technology has successfully depicted cellular heterogeneity in human tissue, providing an unprecedented opportunity to understand the context-specific expression of complex trait-associated genes in human tissue-cell types (TCs). Here, we present the first web-based application to quickly assess the cell-type-specificity of genes, named Web-based Cell-type Specific Enrichment Analysis of Genes (WebCSEA, available at https://bioinfo.uth.edu/webcsea/). Specifically, we curated a total of 111 scRNA-seq panels of human tissues and 1,355 TCs from 61 different general tissues across 11 human organ systems. We adapted our previous decoding tissue-specificity (deTS) algorithm to measure the enrichment for each tissue-cell type (TC). To overcome the potential bias from the number of signature genes between different TCs, we further developed a permutation-based method that accurately estimates the TC-specificity of a given inquiry gene list. WebCSEA also provides an interactive heatmap that displays the cell-type specificity across 1355 human TCs, and other interactive and static visualizations of cell-type specificity by human organ system, developmental stage, and top-ranked tissues and cell types. In short, WebCSEA is a one-click application that provides a comprehensive exploration of the TC-specificity of genes among human major TC map.


Assuntos
Perfilação da Expressão Gênica , Análise de Célula Única , Software , Humanos , Algoritmos , Perfilação da Expressão Gênica/métodos , Internet , Herança Multifatorial , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
14.
Nat Commun ; 13(1): 702, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132056

RESUMO

Acne vulgaris is a highly heritable skin disorder that primarily impacts facial skin. Severely inflamed lesions may leave permanent scars that have been associated with long-term psychosocial consequences. Here, we perform a GWAS meta-analysis comprising 20,165 individuals with acne from nine independent European ancestry cohorts. We identify 29 novel genome-wide significant loci and replicate 14 of the 17 previously identified risk loci, bringing the total number of reported acne risk loci to 46. Using fine-mapping and eQTL colocalisation approaches, we identify putative causal genes at several acne susceptibility loci that have previously been implicated in Mendelian hair and skin disorders, including pustular psoriasis. We identify shared genetic aetiology between acne, hormone levels, hormone-sensitive cancers and psychiatric traits. Finally, we show that a polygenic risk score calculated from our results explains up to 5.6% of the variance in acne liability in an independent cohort.


Assuntos
Acne Vulgar/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Herança Multifatorial , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Risco
15.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34663731

RESUMO

The genetic origins of nanoscale extracellular vesicles in our body fluids remains unclear. Here, we perform a tracking analysis of urinary exosomes via RNA sequencing, revealing that urine exosomes mostly express tissue-specific genes for the bladder and have close cell-genetic relationships to the endothelial cell, basal cell, monocyte, and dendritic cell. Tracking the differentially expressed genes of cancers and corresponding enrichment analysis show urine exosomes are intensively involved in immune activities, indicating that they may be harnessed as reliable biomarkers of noninvasive liquid biopsy in cancer genomic diagnostics and precision medicine.


Assuntos
Exossomos/metabolismo , Neoplasias/patologia , Urina , Humanos , Biópsia Líquida , Neoplasias/metabolismo
16.
BMC Bioinformatics ; 22(Suppl 9): 403, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433407

RESUMO

BACKGROUND: Advances in the expression quantitative trait loci (eQTL) studies have provided valuable insights into the mechanism of diseases and traits-associated genetic variants. However, it remains challenging to evaluate and control the quality of multi-source heterogeneous eQTL raw data for researchers with limited computational background. There is an urgent need to develop a powerful and user-friendly tool to automatically process the raw datasets in various formats and perform the eQTL mapping afterward. RESULTS: In this work, we present a pipeline for eQTL analysis, termed eQTLQC, featured with automated data preprocessing for both genotype data and gene expression data. Our pipeline provides a set of quality control and normalization approaches, and utilizes automated techniques to reduce manual intervention. We demonstrate the utility and robustness of this pipeline by performing eQTL case studies using multiple independent real-world datasets with RNA-seq data and whole genome sequencing (WGS) based genotype data. CONCLUSIONS: eQTLQC provides a reliable computational workflow for eQTL analysis. It provides standard quality control and normalization as well as eQTL mapping procedures for eQTL raw data in multiple formats. The source code, demo data, and instructions are freely available at https://github.com/stormlovetao/eQTLQC .


Assuntos
Locos de Características Quantitativas , Software , Controle de Qualidade , RNA-Seq , Sequenciamento do Exoma
17.
Sci Rep ; 11(1): 13980, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234189

RESUMO

Previous observational studies have identified correlations between Parkinson's disease (PD) risk and lifestyle factors. However, whether or not those associations are causal remains unclear. To infer causality between PD risk and smoking or alcohol intake, we conducted a two-sample Mendelian randomization study using genome-wide association study summary statistics from the GWAS & Sequencing Consortium of Alcohol and Nicotine use study (1.2 million participants) and the latest meta-analysis from the International Parkinson's Disease Genomics Consortium (37,688 PD cases and 18,618 proxy-cases). We performed sensitivity analyses, including testing for pleiotropy with MR-Egger and MR-PRESSO, and multivariable MR modeling to account for the genetic effects of competing substance use traits on PD risk. Our results revealed causal associations of alcohol intake (OR 0.79; 95% CI 0.65-0.96; p = 0.021) and smoking continuation (which compares current vs. former smokers) (OR 0.64; 95% CI 0.46-0.89; p = 0.008) with lower PD risk. Multivariable MR analyses showed that the causal association between drinks per week and PD is unlikely due to confounding by smoking behavior. Finally, frailty analyses suggested that the causal effects of both alcohol intake and smoking continuation on PD risk estimated from MR analysis are not explained by the presence of survival bias alone. Our findings support the role of smoking as a protective factor against PD, but only when comparing current vs. former smokers. Similarly, increased alcohol intake had a protective effect over PD risk, with the alcohol dehydrogenase 1B (ADH1B) locus as a potential candidate for further investigation of the mechanisms underlying this association.


Assuntos
Suscetibilidade a Doenças , Comportamento de Ingestão de Líquido , Doença de Parkinson/etiologia , Fumar Tabaco/efeitos adversos , Consumo de Bebidas Alcoólicas , Algoritmos , Alelos , Análise de Dados , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Humanos , Análise da Randomização Mendeliana , Razão de Chances , Polimorfismo de Nucleotídeo Único , Fatores de Risco
18.
Brief Funct Genomics ; 20(4): 223-234, 2021 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-33969380

RESUMO

In the last decade, massive omics datasets have been generated for human brain research. It is evolving so fast that a timely update is urgently needed. In this review, we summarize the main multi-omics data resources for the human brains of both healthy controls and neuropsychiatric disorders, including schizophrenia, autism, bipolar disorder, Alzheimer's disease, Parkinson's disease, progressive supranuclear palsy, etc. We also review the recent development of single-cell omics in brain research, such as single-nucleus RNA-seq, single-cell ATAC-seq and spatial transcriptomics. We further investigate the integrative multi-omics analysis methods for both tissue and single-cell data. Finally, we discuss the limitations and future directions of the multi-omics study of human brain disorders.


Assuntos
Encefalopatias , Transcriptoma , Humanos , Transcriptoma/genética
19.
Bioinformatics ; 37(22): 4269-4271, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34009297

RESUMO

SUMMARY: Genome-wide association studies (GWAS) have revealed thousands of genetic loci for common diseases. One of the main challenges in the post-GWAS era is to understand the causality of the genetic variants. Expression quantitative trait locus (eQTL) analysis is an effective way to address this question by examining the relationship between gene expression and genetic variation in a sufficiently powered cohort. However, it is frequently a challenge to determine the sample size at which a variant with a specific allele frequency will be detected to associate with gene expression with sufficient power. This is a particularly difficult task for single-cell RNAseq studies. Therefore, a user-friendly tool to estimate statistical power for eQTL analyses in both bulk tissue and single-cell data is needed. Here, we presented an R package called powerEQTL with flexible functions to estimate power, minimal sample size or detectable minor allele frequency for both bulk tissue and single-cell eQTL analysis. A user-friendly, program-free web application is also provided, allowing users to calculate and visualize the parameters interactively. AVAILABILITY AND IMPLEMENTATION: The powerEQTL R package source code and online tutorial are freely available at CRAN: https://cran.r-project.org/web/packages/powerEQTL/. The R shiny application is publicly hosted at https://bwhbioinfo.shinyapps.io/powerEQTL/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Humanos , Tamanho da Amostra , Software , Frequência do Gene
20.
Nat Genet ; 53(6): 787-793, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33958783

RESUMO

A key driver of patients' well-being and clinical trials for Parkinson's disease (PD) is the course that the disease takes over time (progression and prognosis). To assess how genetic variation influences the progression of PD over time to dementia, a major determinant for quality of life, we performed a longitudinal genome-wide survival study of 11.2 million variants in 3,821 patients with PD over 31,053 visits. We discover RIMS2 as a progression locus and confirm this in a replicate population (hazard ratio (HR) = 4.77, P = 2.78 × 10-11), identify suggestive evidence for TMEM108 (HR = 2.86, P = 2.09 × 10-8) and WWOX (HR = 2.12, P = 2.37 × 10-8) as progression loci, and confirm associations for GBA (HR = 1.93, P = 0.0002) and APOE (HR = 1.48, P = 0.001). Polygenic progression scores exhibit a substantial aggregate association with dementia risk, while polygenic susceptibility scores are not predictive. This study identifies a novel synaptic locus and polygenic score for cognitive disease progression in PD and proposes diverging genetic architectures of progression and susceptibility.


Assuntos
Cognição , Progressão da Doença , Loci Gênicos , Estudo de Associação Genômica Ampla , Herança Multifatorial/genética , Doença de Parkinson/genética , Doença de Parkinson/patologia , Sinapses/genética , Apolipoproteína E4/genética , Transtornos Cognitivos/genética , Predisposição Genética para Doença , Glucosilceramidase/genética , Humanos , Estudos Longitudinais , Mutação/genética , Doença de Parkinson/fisiopatologia , Modelos de Riscos Proporcionais , Fatores de Risco , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA