Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 197: 107655, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36989992

RESUMO

The pseudobulb is a storage organ for water and nutrients that plays a crucial role in the growth and survival of epiphytic orchids. However, the role of water and metabolites in pseudobulb during adaptation to environmental stress are rarely detected through control experiments. In the present study, water-related physiological traits and metabolite changes in the pseudobulbs at the flowering stage and full leaf expansion stage for Pleione aurita were investigated after drought stress and recovery treatments. We found that the composition of non-structural carbohydrates (starch vs. soluble sugar) varied over the lifetime of pseudobulbs, and older pseudobulbs stored more water, whereas younger pseudobulbs stored more dry matter. When plants were subjected to drought stress and subsequent recovery, multiple metabolites in the pseudobulbs including non-structural carbohydrates, flavonoids, phenolic acids, as well as amino acids and their derivatives responded positively to these water level fluctuations. For those metabolites that differently accumulated in both stress and recovery processes, old pseudobulbs contained a higher number of these key metabolites than did the connected younger pseudobulbs. In addition, young and old pseudobulbs use different metabolic pathways to both respond and recover to drought. These results indicate that orchid pseudobulbs cope with water level fluctuations by mobilizing metabolite reserves and that pseudobulbs of different ages exhibit different physiological and metabolic responses to drought stress. These findings broadens our understanding of the role pseudobulbs play in the survival of orchids growing in epiphytic habitats.


Assuntos
Orchidaceae , Orchidaceae/metabolismo , Secas , Folhas de Planta/metabolismo , Carboidratos , Água/metabolismo , Estresse Fisiológico
2.
Plant Sci ; 319: 111222, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35487672

RESUMO

Almost all genomes have orphan genes, the majority of which are not functionally annotated. There is growing evidence showed that orphan genes may play important roles in the environmental stress response of Physcomitrium patens. We identified PpARDT (ABA-responsive drought tolerance) as a moss-specific and ABA-responsive orphan gene in P. patens. PpARDT is mainly expressed during the gametophytic stage of the life cycle, and the expression was induced by different abiotic stresses. A PpARDT knockout (Ppardt) mutant showed reduced dehydration-rehydration tolerance, and the phenotype could be rescued by exogenous ABA. Meanwhile, transgenic Arabidopsis lines exhibiting heterologous expression of PpARDT were more sensitive to exogenous ABA than wild-type (Col-0) plants and showed enhanced drought tolerance. These indicate that PpARDT confers drought tolerance among land plants potentially by enhancing ABA response. Further, we identified genes encoding abscisic acid receptor PYR/PYL family proteins, and ADP-ribosylation factors (Arf) as hub genes associated with the Ppardt phenotype. Given the lineage-specific characteristics of PpARDT, our results provide insights into the roles of orphan gene in shaping lineage-specific adaptation possibly by recruiting common pre-existed pathway components.


Assuntos
Arabidopsis , Bryopsida , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Bryopsida/genética , Secas , Estresse Fisiológico/genética
3.
Int J Mol Sci ; 23(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35054922

RESUMO

The development and tissue-dependent color formation of the horticultural plant results in various color pattern flowers. Anthocyanins and carotenoids contribute to the red and yellow colors, respectively. In this study, quantitative real-time polymerase chain reaction (qRT-PCR) is used to analyze the expression profiles of anthocyanin and carotenoids biosynthesis genes in Cymbidium lowianum (Rchb.f.) Rchb.f. Appropriate reference gene selection and validation are required before normalization of gene expression in qRT-PCR analysis. Thus, we firstly selected 12 candidate reference genes from transcriptome data, and used geNorm and Normfinder to evaluate their expression stability in lip (divided into abaxial and adaxial), petal, and sepal of the bud and flower of C. lowianum. Our results show that the two most stable reference genes in different tissues of C. lowianum bud and flower are EF1δ and 60S, the most unstable reference gene is 26S. The expression profiles of the CHS and BCH genes were similar to FPKM value profiles after normalization to the two most stable reference genes, EF1δ and 60S, with the upregulated CHS and BCH expression in flower stage, indicating that the ABP and CBP were activated across the stages of flower development. However, when the most unstable reference gene, 26S, was used to normalize the qRT-PCR data, the expression profiles of CHS and BCH differed from FPKM value profiles, indicating the necessity of selecting stable reference genes. Moreover, CHS and BCH expression was highest in the abaxial lip and adaxial lip, respectively, indicating that the ABP and CBP were activated in abaxial and adaxial lip, respectively, resulting in a presence of red or yellow segments in abaxial and adaxial lip. This study is the first to provide reference genes in C. lowianum, and also provide useful information for studies that aim to understand the molecular mechanisms of flower color formation in C. lowianum.


Assuntos
Flores/genética , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , Orchidaceae/genética , Pigmentação/genética , Característica Quantitativa Herdável , Perfilação da Expressão Gênica , Genes de Plantas , Genômica/métodos , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
4.
Front Plant Sci ; 8: 950, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28642769

RESUMO

Histone modifications play important roles in regulating the expression of C4 photosynthetic genes. Given that all enzymes required for the C4 photosynthesis pathway are present in C3 plants, it has been hypothesized that this expression regulatory mechanism has been conserved. However, the relationship between histone modification and the expression of homologs of C4 photosynthetic enzyme genes has not been well determined in C3 plants. In the present study, we cloned nine hybrid poplar (Populus simonii × Populus nigra) homologs of maize (Zea mays) C4 photosynthetic enzyme genes, carbonic anhydrase (CA), pyruvate orthophosphate dikinase (PPDK), phosphoenolpyruvate carboxykinase (PCK), and phosphoenolpyruvate carboxylase (PEPC), and investigated the correlation between the expression levels of these genes and the levels of promoter histone acetylation modifications in four vegetative tissues. We found that poplar homologs of C4 homologous genes had tissue-dependent expression patterns that were mostly well-correlated with the level of histone acetylation modification (H3K9ac and H4K5ac) determined by chromatin immunoprecipitation assays. Treatment with the histone deacetylase inhibitor trichostatin A further confirmed the role of histone acetylation in the regulation of the nine target genes. Collectively, these results suggest that both H3K9ac and H4K5ac positively regulate the tissue-dependent expression pattern of the PsnCAs, PsnPPDKs, PsnPCKs, and PsnPEPCs genes and that this regulatory mechanism seems to be conserved among the C3 and C4 species. Our findings provide new insight that will aid efforts to modify the expression pattern of these homologs of C4 genes to engineer C4 plants from C3 plants.

5.
J Plant Physiol ; 213: 16-22, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28285130

RESUMO

In C4 plants, phosphoenolpyruvate carboxykinase (PEPCK) plays a key role in the C4 cycle. PEPCK is also involved in gluconeogenesis and is conserved in both lower and higher organisms, including in animals and plants. A phylogenic tree constructed from PEPCK sequences from bacteria to higher plants indicates that the C4 Poaceae PEPCKs are conserved and have diverged from the PEPCKs of C3 plants. The maximum enzymatic activities of wild-type and phosphorylation mimic PEPCK proteins indicate that there is a significant difference between C3 and C4 plant PEPCKs. The conserved PEPCK phosphorylation sites are regulated differently in C3 and C4 plants. These results suggest that the functions of PEPCK have been conserved, but that sequences have diverged and regulation of PEPCK is important in C4 plants, but not in herbaceous and, in particular, woody C3 plants.


Assuntos
Fosfoenolpiruvato Carboxilase/metabolismo , Fosfoenolpiruvato Carboxilase/classificação , Fosfoenolpiruvato Carboxilase/genética , Fosforilação , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Exp Cell Res ; 350(1): 73-82, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27871850

RESUMO

Uterine fibroids, also known as uterine leiomyomas, are a benign tumor of the human uterus and the commonest estrogen-dependent benign tumor found in women. Myocardin is an important transcriptional regulator in smooth and cardiac muscle development. The role of myocardin and its relationship with ERα in uterine fibroids have barely been addressed. We noticed that the expression of myocardin was markedly reduced in human uterine fibroid tissue compared with corresponding normal or adjacent myometrium tissue. Here we reported that myocardin induced the transcription and expression of differentiation markers SM22α and alpha smooth muscle actin (α-SMA) in rat primary uterine smooth muscle cells (USMCs) and this effect was inhibited by ERα. Notably, we showed that, ERα induced expression of proliferation markers PCNA and ki-67 in rat primary USMCs. We also found ERα interacted with myocardin and formed complex to bind to CArG box and inhibit the SM22α promoter activity. Furthermore, ERα inhibited the transcription and expression of myocardin, and reduced the levels of transcription and expression of downstream target SM22α, a SMC differentiation marker. Our data thus provided important and novel insights into how ERα and myocardin interact to control the cell differentiation and proliferation of USMCs. Thus, it may provide potential therapeutic target for uterine fibroids.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Leiomioma/metabolismo , Proteínas Nucleares/farmacologia , Transativadores/farmacologia , Animais , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica/genética , Humanos , Leiomioma/induzido quimicamente , Leiomioma/tratamento farmacológico , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Ratos , Fator de Resposta Sérica/metabolismo , Transativadores/metabolismo
7.
Photosynth Res ; 129(1): 71-83, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27161567

RESUMO

More efficient photosynthesis has allowed C4 plants to adapt to more diverse ecosystems (such as hot and arid conditions) than C3 plants. To better understand C4 photosynthesis, we investigated the expression patterns of C4 genes (C4PPDK and PCK1) and their non-C4 homologous genes (CyPPDK1, CyPPDK2, and PCK2) in the different organs of maize (Zea mays). Both C4 genes and non-C4 genes showed organ-dependent expression patterns. The mRNA levels of C4 genes were more abundant in leaf organ than in seeds at 25 days after pollination (DAP), while non-C4 genes were mainly expressed in developing seeds. Further, acetylation of histone H3 lysine 9 (H3K9ac) positively correlates with mRNA levels of C4 genes (C4PPDK and PCK1) in roots, stems, leaves, and seeds at 25 DAP, acetylation of histone H4 lysine 5 (H4K5ac) in the promoter regions of both C4 (C4PPDK and PCK1) and non-C4 genes (CyPPDK1, CyPPDK2, and PCK2) correlated well with their transcripts abundance in stems. In photosynthetic organs (stems and leaves), dimethylation of histone H3 lysine 9 (H3K9me2) negatively correlated with mRNA levels of both C4 and non-C4 genes. Taken together, our data suggest that histone modification was involved in the transcription regulation of both C4 genes and non-C4 genes, which might provide a clue of the functional evolution of C4 genes.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Código das Histonas/genética , Histonas/genética , Fotossíntese/genética , Zea mays/genética , Acetilação , Especificidade de Órgãos , Folhas de Planta/genética , Proteínas de Plantas/genética , Caules de Planta/genética
8.
Virus Res ; 188: 1-7, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-24681303

RESUMO

Bovine parainfluenza virus type 3 (BPIV3) is one of the most important of the known viral respiratory tract agents of both young and adult cattle and widespread among cattle around the world. Up to present, three genotypes A, B and C of BPIV3 have been described on the basis of genetic and phylogenetic analysis and only limited studies on the pathogenesis of the genotype A of BPIV3 infection in calves and laboratory animals have been performed. The report about experimental infections of the genotypes B and C of BPIV3 in laboratory animals and calves was scant. Therefore, an experimental infection of guinea pigs with the Chinese BPIV3 strain SD0835 of the genotype C was performed. Sixteen guinea pigs were intranasally inoculated with the suspension of SD0835, while eight control guinea pigs were also intranasally inoculated with the same volume of supernatant from uninfected MDBK cells. The virus-inoculated guinea pigs displayed a few observable clinical signs that were related to the respiratory tract disease and two of the sixteen experimentally infected guinea pigs died at 2 and 3 days post inoculation (PI), respectively, and apparent gross pneumonic lesions were observed at necropsy. The gross pneumonic lesions in guinea pigs inoculated with SD0835 consisted of dark red, slightly depressed, irregular areas of consolidation in the lung lobes from the second to 9th day of infection at necropsy, and almost complete consolidation and atelectasis of the lung lobes were seen at 7 days PI. Histopathological changes including alveoli septa thickening and focal cellulose pneumonia were also observed in the lungs of guinea pigs experimentally infected with SD0835. Viral replication was detectable by virus isolation and titration, real-time RT-PCR and immunohistochemistry (IHC) staining in the respiratory tissues of guinea pigs as early as 24h after intranasal inoculation with SD0835. The results of virus isolation and titration showed that guinea pigs were permissive for SD0835 replication and exhibited a higher virus replication level in both lungs and tracheas. As well, the results of IHC staining implicated that the lungs and tracheas were the major tissues in which SD0835 replicated. Virus-specific serum neutralizing antibodies against BPIV3 were detected in virus-inoculated guinea pigs. The aforementioned results indicated that BPIV3 strain SD0835 of the genotype C was pathogenic to guinea pigs and could cause a few observable clinical signs, and gross and histologic lesions in virus-inoculated guinea pigs. Thus guinea pig is an ideal laboratory animal infection model for BPIV3 and would cast more light on the genotype C of BPIV3 infection process, in vivo tropism and pathogenesis or serve as a useful system for monitoring the pathogenesis of SD0835 and other BPIV3 isolates.


Assuntos
Modelos Animais de Doenças , Vírus da Parainfluenza 3 Bovina/patogenicidade , Infecções por Respirovirus/patologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Bovinos , Feminino , Cobaias , Histocitoquímica , Imuno-Histoquímica , Pulmão/patologia , Pulmão/virologia , Reação em Cadeia da Polimerase em Tempo Real , Infecções por Respirovirus/virologia , Traqueia/patologia , Traqueia/virologia , Carga Viral
9.
PLoS One ; 8(3): e58681, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23536812

RESUMO

BACKGROUND: The N-terminal protein processing mechanism (NPM) including N-terminal Met excision (NME) and N-terminal acetylation (N(α)-acetylation) represents a common protein co-translational process of some eukaryotes. However, this NPM occurred in woody plants yet remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: To reveal the NPM in poplar, we investigated the N(α)-acetylation status of poplar proteins during dormancy by combining tandem mass spectrometry with TiO2 enrichment of acetylated peptides. We identified 58 N-terminally acetylated (N(α)-acetylated) proteins. Most proteins (47, >81%) are subjected to N(α)-acetylation following the N-terminal removal of Met, indicating that N(α)-acetylation and NME represent a common NPM of poplar proteins. Furthermore, we confirm that poplar shares the analogous NME and N(α)-acetylation (NPM) to other eukaryotes according to analysis of N-terminal features of these acetylated proteins combined with genome-wide identification of the involving methionine aminopeptidases (MAPs) and N-terminal acetyltransferase (Nat) enzymes in poplar. The N(α)-acetylated reactions and the involving enzymes of these poplar proteins are also identified based on those of yeast and human, as well as the subcellular location information of these poplar proteins. CONCLUSIONS/SIGNIFICANCE: This study represents the first extensive investigation of N(α)-acetylation events in woody plants, the results of which will provide useful resources for future unraveling the regulatory mechanisms of N(α)-acetylation of proteins in poplar.


Assuntos
Proteínas de Plantas/metabolismo , Populus/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Amidoidrolases/metabolismo , Sequência de Aminoácidos , Aminopeptidases/classificação , Aminopeptidases/genética , Aminopeptidases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Genoma de Planta , Dados de Sequência Molecular , Acetiltransferases N-Terminal/metabolismo , Filogenia , Populus/enzimologia , Populus/genética , Matrizes de Pontuação de Posição Específica , Alinhamento de Sequência
10.
Vet Microbiol ; 158(1-2): 199-204, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22391217

RESUMO

To date, three genotypes A, B, and C of bovine parainfluenza virus type 3 (BPIV3) have been isolated from cattle and only limited studies on the pathogenesis of the genotype A of BPIV3 infection in calves and laboratory animals have been conducted. The pathogenesis of the genotypes B and C of BPIV3 infection in calves and laboratory animals have not been reported. To alleviate the difficulties associated with sourcing suitable calves for infection studies, the establishment of BPIV3 infection model using laboratory model animals could aid in increasing the knowledge of the pathogenesis of this virus. Therefore thirty Balb/c mice were intranasally inoculated with a Chinese BPIV3 strain SD0835 which was classified as genotype C. Virus replications in mice were demonstrated by using virus isolation and titration, immunofluorescent staining, and immunohistochemistry and had occurred in the respiratory tissues as early as 24h after intranasal inoculation. The results of immunofluorescent staining and IHC implicated that the lungs and tracheas might be the major tissues in which the SD0835 infected and replicated. The histopathologic examinations revealed that alveoli septa thickening and focal cellulose pneumonia were seen in the lungs of experimentally infected mice. The aforementioned results indicated that the SD0835 of the genotype C was pathogenic to Balb/c mice and the mouse infection model could cast light on the genotype C of BPIV3 infection process and pathogenesis.


Assuntos
Doenças dos Bovinos/virologia , Modelos Animais de Doenças , Camundongos , Vírus da Parainfluenza 3 Bovina , Infecções por Respirovirus/veterinária , Animais , Bovinos , Imuno-Histoquímica , Pulmão/virologia , Camundongos Endogâmicos BALB C , RNA Viral/genética , Infecções por Respirovirus/virologia , Organismos Livres de Patógenos Específicos , Replicação Viral
11.
Virol J ; 8: 557, 2011 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-22188676

RESUMO

BACKGROUND: Bovine adenovirus type 3 (BAV-3) belongs to the Mastadenovirus genus of the family Adenoviridae and is involved in respiratory and enteric infections of calves. The isolation of BAV-3 has not been reported prior to this study in China. In 2009, there were many cases in cattle showing similar clinical signs to BAV-3 infection and a virus strain, showing cytopathic effect in Madin-Darby bovine kidney cells, was isolated from a bovine nasal swab collected from feedlot cattle in Heilongjiang Province, China. The isolate was confirmed as a bovine adenovirus type 3 by PCR and immunofluorescence assay, and named as HLJ0955. So far only the complete genome sequence of prototype of BAV-3 WBR-1 strain has been reported. In order to further characterize the Chinese isolate HLJ0955, the complete genome sequence of HLJ0955 was determined. RESULTS: The size of the genome of the Chinese isolate HLJ0955 is 34,132 nucleotides in length with a G+C content of 53.6%. The coding sequences for gene regions of HLJ0955 isolate were similar to the prototype of BAV-3 WBR-1 strain, with 80.0-98.6% nucleotide and 87.5-98.8% amino acid identities. The genome of HLJ0955 strain contains 16 regions and four deletions in inverted terminal repeats, E1B region and E4 region, respectively. The complete genome and DNA binding protein gene based phylogenetic analysis with other adenoviruses were performed and the results showed that HLJ0955 isolate belonged to BAV-3 and clustered within the Mastadenovirus genus of the family Adenoviridae. CONCLUSIONS: This is the first study to report the isolation and molecular characterization of BAV-3 from cattle in China. The phylogenetic analysis performed in this study supported the use of the DNA binding protein gene of adenovirus as an appropriate subgenomic target for the classification of different genuses of the family Adenoviridae on the molecular basis. Meanwhile, a large-scale pathogen and serological epidemiological investigations for BVA-3 infection might be carried out in cattle in China. This report will be a good beginning for further studies on BAV-3 in China.


Assuntos
Infecções por Adenoviridae/veterinária , Doenças dos Bovinos/virologia , DNA Viral/genética , Genoma Viral , Mastadenovirus/genética , Proteínas Virais/genética , Infecções por Adenoviridae/virologia , Animais , Composição de Bases , Bovinos , China , Mapeamento Cromossômico , Proteínas de Ligação a DNA , Tamanho do Genoma , Sequências Repetidas Invertidas , Mastadenovirus/classificação , Mastadenovirus/isolamento & purificação , Fases de Leitura Aberta , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA