Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38140455

RESUMO

Glycine soja is the wild relative species of cultivated soybean. In this study, we investigated the population divergence and genetic basis of the local adaptation of wild soybean in China using genome-wide single-nucleotide polymorphisms (SNPs) of a population of 72 G. soja accessions. Using phylogenetic analysis, we observed that G. soja accessions clustered into three distinct groups, each corresponding to a specific geographic region, the northeastern region (NER), central region (CR), and southern region (SR), consistent with previous studies. Notably, we found a significant positive correlation between genetic and geographic distances. Further population structure analysis revealed each group was associated with an ancestral population and a specific geographic area. By utilizing the genome sequencing data of accessions from 16 different locations, we inferred the population history of these wild soybean groups. Our results indicate that the three groups diverged ~25,000 years ago, coinciding with the time of the last glacial maximum. The effective population size of the SR group expanded first, and subsequently, the NER and CR groups expanded approximately 5000 and 2500 years ago, respectively. Moreover, 83, 104, and 101 significant associated loci (SALs) were identified using genome-wide association analysis for annual mean temperature, annual precipitation, and latitude, respectively. Functional analysis of genes located in SALs highlighted candidate genes related to local adaptation. This study highlights the significant role of geographic isolation and environmental factors in shaping the genetic structure and adaptability of wild soybean populations. Furthermore, it emphasizes the value of wild soybean as a crucial genetic resource for enhancing the adaptability of cultivated soybeans, which have experienced a loss of genetic diversity due to domestication and intensive breeding practices. The insights gained from our research provide valuable information for the protection, conservation, and utilization of this important genetic resource.

2.
Front Plant Sci ; 14: 1268706, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023859

RESUMO

Powdery mildew (PMD), caused by the pathogen Microsphaera diffusa, leads to substantial yield decreases in susceptible soybean under favorable environmental conditions. Effective prevention of soybean PMD damage can be achieved by identifying resistance genes and developing resistant cultivars. In this study, we genotyped 331 soybean germplasm accessions, primarily from Northeast China, using the SoySNP50K BeadChip, and evaluated their resistance to PMD in a greenhouse setting. To identify marker-trait associations while effectively controlling for population structure, we conducted genome-wide association studies utilizing factored spectrally transformed linear mixed models, mixed linear models, efficient mixed-model association eXpedited, and compressed mixed linear models. The results revealed seven single nucleotide polymorphism (SNP) loci strongly associated with PMD resistance in soybean. Among these, one SNP was localized on chromosome (Chr) 14, and six SNPs with low linkage disequilibrium were localized near or in the region of previously mapped genes on Chr 16. In the reference genome of Williams82, we discovered 96 genes within the candidate region, including 17 resistance (R)-like genes, which were identified as potential candidate genes for PMD resistance. In addition, we performed quantitative real-time reverse transcription polymerase chain reaction analysis to evaluate the gene expression levels in highly resistant and susceptible genotypes, focusing on leaf tissues collected at different times after M. diffusa inoculation. Among the examined genes, three R-like genes, including Glyma.16G210800, Glyma.16G212300, and Glyma.16G213900, were identified as strong candidates associated with PMD resistance. This discovery can significantly enhance our understanding of soybean resistance to PMD. Furthermore, the significant SNPs strongly associated with resistance can serve as valuable markers for genetic improvement in breeding M. diffusa-resistant soybean cultivars.

3.
Theor Appl Genet ; 136(6): 125, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165285

RESUMO

KEY MESSAGE: Here, a novel pleiotropic QTL qSS14 simultaneously regulating four seed size traits and two consistently detected QTLs qSW17 and qSLW02 were identified across multiple years. Seed-related traits were the key agronomic traits that have been artificially selected during the domestication of wild soybean. Identifying the genetic loci and genes that regulate seed size could clarify the genetic variations in seed-related traits and provide novel insights into high-yield soybean breeding. In this study, we used a high-density genetic map constructed by F10 RIL populations from a cross between Glycine max and Glycine soja to detect additive QTLs for seven seed-related traits over the last three years. As a result, we identified one novel pleiotropic QTL, qSS14, that simultaneously controlled four seed size traits (100-seed weight, seed length, seed width, and seed thickness) and two consistently detected QTLs, qSW17, and qSLW02, in multiple years of phenotypic data. Furthermore, we predicted two, two and three candidate genes within these three critical loci based on the parental resequencing data and gene function annotations. And the relative expression of four candidate genes GLYMA_14G155100, GLYMA_17G061000, GLYMA_02G273100, and GLYMA_02G273300 showed significant differences among parents and the extreme materials through qRT-PCR analysis. These findings could facilitate the determination of beneficial genes in wild soybean and contribute to our understanding of the soybean domestication process.


Assuntos
Glycine max , Melhoramento Vegetal , Glycine max/genética , Glycine max/metabolismo , Mapeamento Cromossômico , Locos de Características Quantitativas , Sementes/genética , Sementes/metabolismo
4.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499529

RESUMO

Soybean mosaic virus (SMV) is the most prevalent soybean viral disease in the world. As a critical enzyme in the secondary metabolism of plants, especially in lignin synthesis, cinnamyl alcohol dehydrogenase (CAD) is widely involved in plant growth and development, and in defense against pathogen infestation. Here, we performed RNAseq-based transcriptome analyses of a highly SMV-resistant accession (BYO-15) of wild soybean (Glycine soja) and a SMV-susceptible soybean cultivar (Williams 82), also sequenced together with a resistant plant and a susceptible plant of their hybrid descendants at the F3 generation at 7 and 14 days post-inoculation with SMV. We found that the expression of GsCAD1 (from G. soja) was significantly up-regulated in the wild soybean and the resistant F3 plant, while the GmCAD1 from the cultivated soybean (G. max) did not show a significant and persistent induction in the soybean cultivar and the susceptible F3 plant, suggesting that GsCAD1 might play an important role in SMV resistance. We cloned GsCAD1 and overexpressed it in the SMV-susceptible cultivar Williams 82, and we found that two independent GsCAD1-overexpression (OE) lines showed significantly enhanced SMV resistance compared with the non-transformed wild-type (WT) control. Intriguingly, the lignin contents in both OE lines were higher than the WT control. Further liquid chromatography (HPLC) analysis showed that the contents of salicylic acid (SA) were significantly more improved in the OE lines than that of the wild-type (WT), coinciding with the up-regulated expression of an SA marker gene. Finally, we observed that GsCAD1-overexpression affected the accumulation of SMV in leaves. Collectively, our results suggest that GsCAD1 enhances resistance to SMV in soybeans, most likely by affecting the contents of lignin and SA.


Assuntos
Doenças das Plantas , Potyvirus , Doenças das Plantas/genética , Glycine max/genética , Ácido Salicílico , Resistência à Doença/genética
5.
Front Plant Sci ; 13: 968618, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35979081

RESUMO

Seed coat color is a typical evolutionary trait. Identification of the genetic loci that control seed coat color during the domestication of wild soybean could clarify the genetic variations between cultivated and wild soybean. We used 276 F10 recombinant inbred lines (RILs) from the cross between a cultivated soybean (JY47) and a wild soybean (ZYD00321) as the materials to identify the quantitative trait loci (QTLs) for seed coat color. We constructed a high-density genetic map using re-sequencing technology. The average distance between adjacent markers was 0.31 cM on this map, comprising 9,083 bin markers. We identified two stable QTLs (qSC08 and qSC11) for seed coat color using this map, which, respectively, explained 21.933 and 26.934% of the phenotypic variation. Two candidate genes (CHS3C and CHS4A) in qSC08 were identified according to the parental re-sequencing data and gene function annotations. Five genes (LOC100786658, LOC100801691, LOC100806824, LOC100795475, and LOC100787559) were predicted in the novel QTL qSC11, which, according to gene function annotations, might control seed coat color. This result could facilitate the identification of beneficial genes from wild soybean and provide useful information to clarify the genetic variations for seed coat color in cultivated and wild soybean.

6.
Front Plant Sci ; 13: 860056, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693170

RESUMO

Salt stress is one of the most devastating environmental factors threatening soybean growth and yield. However, the molecular link between salt stress and epigenetics has not been well-elucidated in soybean. In this study, from the wild soybean cDNA library, we isolated a GsSnRK1 kinase interacting protein (GsMSTY1) which is phylogenetically homologous with histone acetyltransferase MYST family with unknown function. GsMSTY1 gene is dominantly expressed in wild soybean roots and is highly responsive to abiotic stresses. GsMYST1 was able to be phosphorylated at the Ser44 site by GsSnRK1 and demonstrated in vivo acetyltransferase activity in transgenic soybean roots revealed by an anti-H4ace antibody. A transcription factor protein GsNAC83 was identified to interact with both GsMYST1 and GsSnRK1, and GsNAC83 could recruit the GsMYST1-GsSnRK1 module to COR15B gene promoter determined by ChIP-qPCR assay. To dissect the molecular functions of this ternary complex, we treated the transgenic soybean roots with salt stress and found that the stress could activate GsSnRK1, and the activated GsSnRK1 subsequently phosphorylated GsMYST1 to enhance its acetyltransferase activity which may epigenetically promote the target gene expression. To explore the physiological functions, we coexpressed GsSnRK1 and GsMYST1 genes in soybean hairy roots and found that only GsSnRK1(wt)/GsMYST1(wt) but not the mutant genes could promote soybean resistance to salt stress, implicating that phosphorylation of GsMYST1 is required for it to acetylate histone H4 on the target genes to upregulate expression of the stress-related genes. Our data shed new light on the functions of the GsSnRK1-GsMYST1-GsNAC83 module and its regulatory mechanism on plant tolerance to abiotic stresses.

7.
Front Microbiol ; 13: 896896, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35770170

RESUMO

In most bacteria, iron plays an important role in the survival of bacteria and the process of infection to the host. Streptococcus pneumoniae (S. pneumoniae) evolved three iron transporters (i.e., PiaABC, PiuABC, and PitABC) responsible for the transportation of three kinds of iron (i.e., ferrichrome, hemin, and ferric ion). Our previous study showed that both mRNA and protein levels of SPD_0090 were significantly upregulated in the ΔpiuA/ΔpiaA/ΔpitA triple mutant, but its detailed biological function is unknown. In this study, we constructed spd_0090 knockout and complement strain and found that the deletion of spd_0090 hinders bacterial growth. SPD_0090 is located on the cell membrane and affects the hemin utilization ability of S. pneumoniae. The cell infection model showed that the knockout strain had stronger invasion and adhesion ability. Notably, knockout of the spd_0090 gene resulted in an enhanced infection ability of S. pneumoniae in mice by increasing the expression of virulence factors. Furthermore, iTRAQ quantitative proteomics studies showed that the knockout of spd_0090 inhibited carbon metabolism and thus suppressed bacterial growth. Our study showed that SPD_0090 negatively regulates the virulence of S. pneumoniae.

8.
Plant Physiol Biochem ; 170: 287-295, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34933148

RESUMO

Soybean is the main economic crop, and also the main source of oil and protein for human consumption. Drought stress has a great influence on the growth and yield of soybean crops. Therefore, improving the drought resistance of soybean, especially drought resistance in the field, is important to increase soybean yield. AP2/ERF (APETALA2/ethylene responsive factor) transcription factors are one of the largest families of transcription factors in plants. However, there has been little research on the value of applying DREB (dehydration-responsive element-binding)-like genes in improving the drought resistance of soybean. Here, we further study the value of the application of GmDREB1 in soybean. The results of drought resistance identification in the field and greenhouse showed that the overexpression of GmDREB1 could significantly enhance the drought resistance of transgenic soybean, and the yield was clearly higher than that of the wild type. GmDREB1 has transcriptional activity and is located in the nucleus. For mechanism analysis of GmDREB1 in soybean, two ERF-like transcription factors, GmERF008 and GmERF106, were shown to interact with GmDREB1 using yeast two-hybrid (Y2H) and bimolecular fluorescence complementary (BiFC) experiments. qRT-PCR (quantitative real-time PCR) results showed that the expression of many stress-related genes in GmDREB1 transgenic soybean were significantly up-regulated compared with the WT under a drought environment. In conclusion, GmDREB1 can regulate the expression of downstream stress-related genes by forming a heterodimer with ERF-like transcription factors, which can improve the drought resistance of transgenic soybean.


Assuntos
Secas , Glycine max , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Glycine max/genética , Glycine max/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Front Plant Sci ; 12: 779598, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899806

RESUMO

Breeding of stress-tolerant plants is able to improve crop yield under stress conditions, whereas CRISPR/Cas9 genome editing has been shown to be an efficient way for molecular breeding to improve agronomic traits including stress tolerance in crops. However, genes can be targeted for genome editing to enhance crop abiotic stress tolerance remained largely unidentified. We have previously identified abscisic acid (ABA)-induced transcription repressors (AITRs) as a novel family of transcription factors that are involved in the regulation of ABA signaling, and we found that knockout of the entire family of AITR genes in Arabidopsis enhanced drought and salinity tolerance without fitness costs. Considering that AITRs are conserved in angiosperms, AITRs in crops may be targeted for genome editing to improve abiotic stress tolerance. We report here that mutation of GmAITR genes by CRISPR/Cas9 genome editing leads to enhanced salinity tolerance in soybean. By using quantitative RT-PCR analysis, we found that the expression levels of GmAITRs were increased in response to ABA and salt treatments. Transfection assays in soybean protoplasts show that GmAITRs are nucleus proteins, and have transcriptional repression activities. By using CRISPR/Cas9 to target the six GmAITRs simultaneously, we successfully generated Cas9-free gmaitr36 double and gmaitr23456 quintuple mutants. We found that ABA sensitivity in these mutants was increased. Consistent with this, ABA responses of some ABA signaling key regulator genes in the gmaitr mutants were altered. In both seed germination and seedling growth assays, the gmaitr mutants showed enhanced salt tolerance. Most importantly, enhanced salinity tolerance in the mutant plants was also observed in the field experiments. These results suggest that mutation of GmAITR genes by CRISPR/Cas9 is an efficient way to improve salinity tolerance in soybean.

10.
Transgenic Res ; 30(6): 799-810, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34115286

RESUMO

The characterization of tissue-specific promoters is critical for studying the functions of genes in a given tissue/organ. To study tissue-specific promoters in soybean, we screened tissue-specific expressed genes using published soybean RNA-Seq-based transcriptome data coupled with RT-PCR analysis. We cloned the promoters of three genes, GmADR1, GmBTP1, and GmGER1, and constructed their corresponding ß-Glucuronidase (GUS) promoter-GUS reporter vectors. We generated transgenic Arabidopsis plants and examined the expression patterns of these promoters by GUS staining and RT-PCR analysis. We also transformed the promoter-GUS reporter vectors into soybean to obtain hairy roots, and examined promoter expression by GUS staining. We found a root-specific expression pattern of GmADR1 and GmBTP1 in both Arabidopsis and soybean, and the promoter of GmGER1 showed a leaf-specific pattern in transgenic Arabidopsis plants. To test the potential utility of these promoters in soybean improvement by transgenic means, we used the GmADR1 promoter to drive expression of a salt resistance gene in soybean, GmCaM4, by generating transgenic soybean plants. We found that the transgenic plants had significantly enhanced salt tolerance compared to non-transformed wild-type, suggesting that introducing endogenous promoters by transgenic means can drive the expression of functional genes in specific tissues and organs in soybean.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Glucuronidase/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Glycine max/genética , Glycine max/metabolismo
11.
J Proteome Res ; 20(5): 2839-2850, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33872026

RESUMO

The unreasonable misuse of antibiotics has led to the emergence of large-scale drug-resistant bacteria, seriously threatening human health. Compared with drug-sensitive bacteria, resistant bacteria are difficult to clear by host immunity. To fully explore the adaptive mechanism of resistant bacteria to the iron-restricted environment, we performed data-independent acquisition-based quantitative proteomics on ciprofloxacin (CIP)-resistant (CIP-R) Staphylococcus aureus in the presence or absence of iron. On bioinformatics analysis, CIP-R bacteria showed stronger amino acid synthesis and energy storage ability. Notably, CIP-R bacteria increased virulence by upregulating the expression of many virulence-related proteins and enhancing the synthesis of virulence-related amino acids under iron-restricted stress. This study will help us to further explain the adaptive mechanisms that lead to bacterial resistance to antibiotics depending on the host environment and provide insights into the development of novel drugs for the treatment of drug-resistant bacterial infections.


Assuntos
Ciprofloxacina , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ciprofloxacina/farmacologia , Humanos , Ferro , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Virulência
12.
Transgenic Res ; 30(1): 51-62, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33387102

RESUMO

Soybean has a palaeopolyploid genome with nearly 75% of the genes present in multiple copies. Although the CRISPR/Cas9 system has been employed in soybean to generate site-directed mutagenesis, a systematical assessment of mutation efficiency of the CRISPR/Cas9 system for the multiple-copy genes is still urgently needed. Here, we successfully optimize one sgRNA CRISPR/Cas9 system in soybean by testing the efficiency, pattern, specificity of the mutations at multiple loci of GmFAD2 and GmALS. The results showed that simultaneous site-directed mutagenesis of two homoeologous loci by one sgRNA, the mutation frequency in the T0 generation were 64.71% for GmPDS, 60.0% for GmFAD2 and 42.86% for GmALS, respectively. The chimeric and heterozygous mutations were dominant types. Moreover, association of phenotypes with mutation pattern at target loci of GmPDS11 and GmPDS18 could help us further demonstrate that the CRISPR/Cas9 system can efficiently generate target specific mutations at multiple loci using one sgRNA in soybean, albeit with a relatively low transformation efficiency.


Assuntos
Ácidos Graxos Dessaturases/genética , Glycine max/genética , Oxirredutases/genética , Plantas Geneticamente Modificadas/genética , Sistemas CRISPR-Cas/genética , Edição de Genes , Genoma de Planta , Mutagênese Sítio-Dirigida , Mutação/genética , Fenótipo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , RNA Guia de Cinetoplastídeos/genética , Glycine max/crescimento & desenvolvimento
13.
BMC Genet ; 21(1): 68, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32631255

RESUMO

BACKGROUND: Antimicrobial peptides play important roles in both plant and animal defense systems. Moreover, over-expression of CaAMP1 (Capsicum annuum antimicrobial protein 1), an antimicrobial protein gene isolated from C. annuum leaves infected with Xanthomonas campestris pv. vesicatoria, confers broad-spectrum resistance to hemibiotrophic bacterial and necrotrophic fungal pathogens in Arabidopsis. Phytophthora root and stem rot (PRR), caused by the fungus Phytophthora sojae, is one of the most devastating diseases affecting soybean (Glycine max) production worldwide. RESULTS: In this study, CaAMP1 was transformed into soybean by Agrobacterium-mediated genetic transformation. Integration of the foreign gene in the genome of transgenic soybean plants and its expression at the translation level were verified by Southern and western blot analyses, respectively. CaAMP1 over-expression (CaAMP1-OX) lines inoculated with P. sojae race 1 exhibited enhanced and stable PRR tolerance through T2-T4 generations compared with the wild-type Williams 82 plants. Gene expression analyses in the transgenic plants revealed that the expression of salicylic acid-dependent, jasmonic acid-dependent, and plant disease resistance genes (R-genes) were significantly up-regulated after P. sojae inoculation. CONCLUSIONS: These results indicate that CaAMP1 over-expression can significantly enhance PRR tolerance in soybean by eliciting resistance responses mediated by multiple defense signaling pathways. This provides an alternative approach for developing soybean varieties with improved tolerance against soil-borne pathogenic PRR.


Assuntos
Capsicum/genética , Resistência à Doença/genética , Glycine max/parasitologia , Phytophthora/patogenicidade , Doenças das Plantas/parasitologia , Proteínas Citotóxicas Formadoras de Poros/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/parasitologia , Glycine max/genética
14.
Plants (Basel) ; 9(2)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033134

RESUMO

Veratrum dahuricum L. (Liliaceae), a monocotyledonous species distributed throughout the Changbai mountains of Northeast China, is pharmaceutically important, due to the capacity to produce the anticancer drug cyclopamine. An efficient transformation system of Veratrum dahuricum mediated with Agrobacterium tumefaciens is presented. Murashige and Skoog (MS) medium containing 8 mg/L picloram was used to induce embryogenic calli from immature embryos with 56% efficiency. A. tumefaciens LBA4404 carrying the bar gene driven by the cauliflower mosaic virus 35S promoter was employed for embryogenic callus inoculation. A. tumefaciens cell density OD660 = 0.8 for inoculation, half an hour infection period, and three days of co-culture duration were found to be optimal for callus transformation. Phosphinothricin (PPT, 16 mg/L) was used as the selectable agent, and a transformation efficiency of 15% (transgenic plants/100 infected calli) was obtained. The transgenic nature of the regenerated plants was confirmed by PCR and Southern blot analysis, and expression of the bar gene was detected by RT-PCR and Quick PAT/bar strips. The steroid alkaloids cyclopamine, jervine, and veratramine were detected in transgenic plants, in non-transformed and control plants collected from natural sites. The transformation system constitutes a prerequisite for the production of the pharmaceutically important anticancer drug cyclopamine by metabolic engineering of Veratrum.

15.
Transgenic Res ; 29(2): 187-198, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31970612

RESUMO

Pathogenic fungi represent one of the major biotic stresses for soybean production across the world. Sclerotinia sclerotiorum, the causal agent of Sclerotinia stem rot, is a devastating fungal pathogen that is responsible for significant yield losses in soybean. In this study, the chitinase gene CmCH1, from the mycoparasitic fungus Coniothyrium minitans, which infects a range of ascomycetous sclerotia, including S. sclerotiorum and S. minor, was introduced into soybean. Transgenic plants expressing CmCH1 showed higher resistance to S. sclerotiorum infection, with significantly reduced lesion sizes in both detached stem and leaf assays, compared to the non-transformed control. Increased hydrogen peroxide content and activities of defense-responsive enzymes, such as peroxidase, superoxide dismutase, phenylalanine ammonia lyase, and polyphenoloxidase were also observed at the infection sites in the transgenic plants inoculated with S. sclerotiorum. Consistent with the role of chitinases in inducing downstream defense responses by the release of elicitors, several defense-related genes, such as GmNPR2, GmSGT-1, GmRAR1, GmPR1, GmPR3, GmPR12, GmPAL, GmAOS, GmPPO, were also significantly upregulated in the CmCH1-expressing soybean after inoculation. Collectively, our results demonstrate that overexpression of CmCH1 led to increased accumulation of H2O2 and up-regulation of defense-related genes and enzymes, and thus enhanced resistance to S. sclerotiorum infection while showing no detrimental effects on growth and development of soybean plants.


Assuntos
Ascomicetos/enzimologia , Quitinases/genética , Resistência à Doença/genética , Glycine max/genética , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/genética , Ascomicetos/fisiologia , Quitinases/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/microbiologia , Glycine max/microbiologia
16.
Genome ; 63(1): 13-26, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31550433

RESUMO

Soil salinity significantly reduces soybean (Glycine max L.) production worldwide. Plants resistance to stress conditions is a complex characteristic regulated by multiple signaling pathways. The v-Myb avian myeloblastosis viral oncogene homolog (MYB) transcription factor (TF) plays a crucial role in plant development, secondary metabolism, and abiotic stress responses. GmMYB68-overexpression and RNA interference (RNAi) lines were established for examining the function of G. max GmMYB68 in plant responses to abiotic stresses. The predicted amino acid sequence of GmMYB68 was similar to that of R2R3-MYB proteins. Quantitative real-time PCR analysis revealed that GmMYB68 expression varied in response to abiotic stresses. GmMYB68-overexpression lines showed enhanced resistance to salt and alkali stresses and their osmotic adjustment and photosynthetic rates were also stronger than that of GmMYB68-RNAi and wild type plants. Although wild type and transgenic plants showed no significant differences in agronomic traits under normal conditions, the overexpression of GmMYB68 increased grain number and 100-grain weights under salt stress. Our study identified a valuable TF associated with stress response in soybean, as its overexpression might help improve salt and alkali tolerance in soybean and other crops.


Assuntos
Glycine max/genética , Proteínas de Plantas/metabolismo , Tolerância ao Sal , Fatores de Transcrição/metabolismo , Álcalis , Fotossíntese , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Glycine max/metabolismo , Estresse Fisiológico , Fatores de Transcrição/química , Fatores de Transcrição/genética
17.
Front Plant Sci ; 10: 1303, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681389

RESUMO

Flowering time and maturity are important agronomic traits for soybean cultivars to adapt to different latitudes and achieve maximal yield. Genetic studies on genes and quantitative trait loci (QTL) that control flowering time and maturity are extensive. In particular, the molecular bases of E1-E4, E6, E9, E10, and J have been deciphered. For a better understanding of regulation of flowering time gene networks, we need to understand if more molecular factors carrying different biological functions are also involved in the regulation of flowering time in soybeans. We developed a population derived from a cross between a landrace Jilincailihua (male) and a Chinese cultivar Chongnong16 (female). Both parents carry the same genotypes of E1e2E3HaE4 at E1, E2, E3, and E4 loci. Nighty-six individuals of the F2 population were genotyped with Illumina SoySNP8k iSelect BeadChip. A total of 2,407 polymorphic single nucleotide polymorphism (SNP) markers were used to construct a genetic linkage map. One major QTL, qFT12-1, was mapped to an approximately 567-kB region on chromosome 12. Genotyping and phenotyping of recombinant plant whose recombination events were occurring within the QTL region allowed us to narrow down the QTL region to 56.4 kB, in which four genes were annotated. Allelism and association analysis indicated Glyma.12G073900, a PRR7 homolog, is the strongest candidate gene for qFT12-1. The findings of this study disclosed the possible involvement of circadian clock gene in flowering time regulation of soybeans.

18.
Front Plant Sci ; 10: 1031, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552061

RESUMO

Soybean is an important economic crop for human diet, animal feeds and biodiesel due to high protein and oil content. Its productivity is significantly hampered by salt stress, which impairs plant growth and development by affecting gene expression, in part, through epigenetic modification of chromatin status. However, little is known about epigenetic regulation of stress response in soybean roots. Here, we used RNA-seq and ChIP-seq technologies to study the dynamics of genome-wide transcription and histone methylation patterns in soybean roots under salt stress. Eight thousand seven hundred ninety eight soybean genes changed their expression under salt stress treatment. Whole-genome ChIP-seq study of an epigenetic repressive mark, histone H3 lysine 27 trimethylation (H3K27me3), revealed the changes in H3K27me3 deposition during the response to salt stress. Unexpectedly, we found that most of the inactivation of genes under salt stress is strongly correlated with the de novo establishment of H3K27me3 in various parts of the promoter or coding regions where there is no H3K27me3 in control plants. In addition, the soybean histone modifiers were identified which may contribute to de novo histone methylation and gene silencing under salt stress. Thus, dynamic chromatin regulation, switch between active and inactive modes, occur at target loci in order to respond to salt stress in soybean. Our analysis demonstrates histone methylation modifications are correlated with the activation or inactivation of salt-inducible genes in soybean roots.

19.
Plant Cell Rep ; 38(9): 1039-1051, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31144112

RESUMO

KEY MESSAGE: Overexpression of FvC5SD improves drought tolerance in soybean. Drought stress is one of the most important abiotic stress factors that influence soybean crop quality and yield. Therefore, the creation of drought-tolerant soybean germplasm resources through genetic engineering technology is effective in alleviating drought stress. FvC5SD is a type of C-5 sterol desaturase gene that is obtained from the edible fungus Flammulina velutipes. This gene has good tolerance to the effects of stresses, including drought and low temperature, in yeast cells and tomato. In this study, we introduced the FvC5SD gene into the soybean variety Shennong9 through the Agrobacterium-mediated transformation of soybean to identify drought-tolerant transgenic soybean varieties. PCR, RT-PCR, and Southern blot analysis results showed that T-DNA was inserted into the soybean genome and stably inherited by the progeny. The ectopic expression of FvC5SD under the control of a CaMV 35S promoter in transgenic soybean plants enhanced the plant's tolerance to dehydration and drought. Under drought conditions, the transgenic plants accumulated lower levels of reactive oxygen species and exhibited higher activities and expression levels of enzymes and cell than wild-type soybean. iTRAQ analysis of the comparative proteomics showed that some exogenous genes coding either functional or regulatory proteins were induced in the transgenic lines under drought stress. FvC5SD overexpression can serve as a direct and efficient target in improving drought tolerance in soybean and may be an important biotechnological strategy for trait improvement in soybean and other crops.


Assuntos
Flammulina/genética , Sequestradores de Radicais Livres/metabolismo , Regulação da Expressão Gênica de Plantas , Oxirredutases/genética , Espécies Reativas de Oxigênio/metabolismo , Secas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Oxirredutases/metabolismo , Plantas Geneticamente Modificadas , Glycine max/genética , Estresse Fisiológico , Transgenes
20.
Transgenic Res ; 28(1): 103-114, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30478526

RESUMO

Sclerotinia stem rot (SSR), caused by the oxalate-secreting necrotrophic fungal pathogen Sclerotinia sclerotiorum, is one of the devastating diseases that causes significant yield loss in soybean (Glycine max). Until now, effective control of the pathogen is greatly limited by a lack of strong resistance in available commercial soybean cultivars. In this study, transgenic soybean plants overexpressing an oxalic acid (OA)-degrading oxalate oxidase gene OXO from wheat were generated and evaluated for their resistance to S. sclerotiorum. Integration and expression of the transgene were confirmed by Southern and western blot analyses. As compared with non-transformed (NT) control plants, the transgenic lines with increased oxalate oxidase activity displayed significantly reduced lesion sizes, i.e., by 58.71-82.73% reduction of lesion length in a detached stem assay (T3 and T4 generations) and 76.67-82.0% reduction of lesion area in a detached leaf assay (T4 generation). The transgenic plants also showed increased tolerance to the externally applied OA (60 mM) relative to the NT controls. Consecutive resistance evaluation further confirmed an enhanced and stable resistance to S. sclerotiorum in the T3 and T4 transgenic lines. Similarly, decreased OA content and increased hydrogen peroxide (H2O2) levels were also observed in the transgenic leaves after S. sclerotiorum inoculation. Quantitative real-time polymerase chain reaction analysis revealed that the expression level of OXO reached a peak at 1 h and 4 h after inoculation with S. sclerotiorum. In parallel, a significant up-regulation of the hypersensitive response-related genes GmNPR1-1, GmNPR1-2, GmSGT1, and GmRAR occurred, eventually induced by increased release of H2O2 at the infection sites. Interestingly, other defense-related genes such as salicylic acid-dependent genes (GmPR1, GmPR2, GmPR3, GmPR5, GmPR12 and GmPAL), and ethylene/jasmonic acid-dependent genes (GmAOS, GmPPO) also exhibited higher expression levels in the transgenic plants than in the NT controls. Our results demonstrated that overexpression of OXO enhances SSR resistance by degrading OA secreted by S. sclerotiorum and increasing H2O2 levels, and eliciting defense responses mediated by multiple signaling pathways.


Assuntos
Glycine max/genética , Oxirredutases/genética , Plantas Geneticamente Modificadas/genética , Triticum/genética , Ascomicetos/patogenicidade , Ciclopentanos/metabolismo , Resistência à Doença/genética , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/química , Oxilipinas/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Glycine max/enzimologia , Glycine max/crescimento & desenvolvimento , Triticum/enzimologia , Triticum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA