Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 47(10): 2382-2385, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35561356

RESUMO

Chaotic optical communication technology is considered as an effective secure communication technology, which can protect information from a physical layer and is compatible with the existing optical networks. At present, to realize long-distance chaos synchronization is still a very difficult problem, mainly because well-matched hardware cannot always be guaranteed between the transmitter and receiver. In this Letter, we introduce long short-term memory (LSTM) networks to learn a nonlinear dynamics model of an opto-electronic feedback loop, and then apply the trained deep learning model to generate a chaotic waveform for encryption and decryption at the transmitter and receiver. Furthermore, to improve the security, we establish a deep learning model pool which consists of different gain trained models and different delay trained models, and use a digital signal to drive chaos synchronization between the receiver and transmitter. The proposed scheme is experimentally verified in chaotic-encrypted 56-Gbit/s PAM-4 systems, and a decrypted performance below 7%FEC threshold (BER = 3.8×10-3) can be achieved over a 100-km fiber transmission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA