Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (198)2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37607103

RESUMO

Pericytes are crucial mural cells situated within cerebral microcirculation, pivotal in actively modulating cerebral blood flow via contractility adjustments. Conventionally, their contractility is gauged by observing morphological shifts and nearby capillary diameter changes under specific circumstances. Yet, post-tissue fixation, evaluating vitality and ensuing pericyte contractility of imaged brain pericytes becomes compromised. Similarly, genetically labeling brain pericytes falls short in distinguishing between viable and non-viable pericytes, particularly in neurologic conditions like subarachnoid hemorrhage (SAH), where our preliminary investigation validates brain pericyte demise. A reliable protocol has been devised to surmount these constraints, enabling simultaneous fluorescent tagging of both functional and non-functional brain pericytes in brain sections. This labeling method allows high-resolution confocal microscope visualization, concurrently marking the brain slice microvasculature. This innovative protocol offers a means to appraise brain pericyte contractility, its impact on capillary diameter, and pericyte structure. Investigating brain pericyte contractility within the SAH context yields insightful comprehension of its effects on cerebral microcirculation.


Assuntos
Hemorragia Subaracnóidea , Humanos , Pericitos , Encéfalo , Diagnóstico por Imagem , Circulação Cerebrovascular
2.
Anal Chem ; 93(4): 1939-1943, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33427439

RESUMO

5-Hydroxymethylcytosine (5hmC) is a modified base present at low levels in various mammalian cells, and it plays essential roles in gene expression, DNA demethylation, and genomic reprogramming. Herein, we develop a label-free and template-free chemiluminescent biosensor for sensitive detection of 5hmC in genomic DNAs based on 5hmC-specific glucosylation, periodate (IO4+) oxidation, biotinylation, and terminal deoxynucleotidyl transferase (TdT)-assisted isothermal amplification strategy, which we term hmC-GLIB-IAS. This hmC-GLIB-IAS exhibits distinct advantages of bisulfite-free, improved sensitivity, and genome-wide analysis of 5hmC at constant reaction temperature without the involvement of either specially labeled nucleic acid probes or specific templates for signal amplification. This method can sensitively detect 5hmC with a detection limit of 2.07 × 10-13 M, and it can detect 5hmC in the whole genome DNA with a detection limit of 3.92 × 10-5 ng/µL. Moreover, this method can distinguish 5hmC from 5-methylcytosine (5mC) and cytosine (C) and even discriminate 0.1% 5hmC in the mixture of 5hmC-DNA and 5mC-DNA. Importantly, this hmC-GLIB-IAS strategy enables genome-wide analysis without the involvement of either isotope-labeled substrates or specific antibodies, providing a powerful platform to detect 5hmC in real genomic DNA with high reproducibility and accuracy.


Assuntos
5-Metilcitosina/análogos & derivados , Técnicas Biossensoriais/métodos , DNA/química , Medições Luminescentes/métodos , 5-Metilcitosina/química , Linhagem Celular Tumoral , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA