Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Am J Trop Med Hyg ; 108(1): 81-84, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36509063

RESUMO

An open label, phase IIa study conducted in Ethiopia evaluated the efficacy, safety, tolerability, and pharmacokinetics of a single 120-mg dose of the phosphatidylinositol 4-kinase inhibitor MMV390048 in Plasmodium vivax malaria. The study was not completed for operational reasons and emerging teratotoxicity data. For the eight adult male patients enrolled, adequate clinical and parasitological response at day 14 (primary endpoint) was 100% (8/8). Asexual parasites and gametocytes were cleared in all patients by 66 and 78 hours postdose, respectively. There were two recurrent P. vivax infections (days 20 and 28) and a new Plasmodium falciparum infection (day 22). MMV390048 exposure in P. vivax patients was lower than previously observed for healthy volunteers. Mild adverse events, mainly headache and gastrointestinal symptoms, were reported by eight patients. Single-dose MMV390048 (120 mg) rapidly cleared asexual parasites and gametocytes in patients with P. vivax malaria and was well tolerated.


Assuntos
Antimaláricos , Malária Falciparum , Malária Vivax , Malária , Adulto , Humanos , Masculino , Antimaláricos/efeitos adversos , Plasmodium falciparum , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Malária Vivax/tratamento farmacológico , Malária Vivax/parasitologia
4.
Birth Defects Res ; 114(10): 487-498, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35416431

RESUMO

BACKGROUND: MMV390048 is an aminopyridine plasmodial PI4K inhibitor, selected as a Plasmodium blood-stage schizonticide for a next generation of malaria treatments to overcome resistance to current therapies. MMV390048 showed an acceptable preclinical safety profile and progressed up to Phase 2a clinical trials. However, embryofetal studies revealed adverse developmental toxicity signals, including diaphragmatic hernias and cardiovascular malformations in rats but not rabbits. METHODS: In vivo exposures of free plasma concentrations of compound in rats were assessed in relation to in vitro human kinase inhibition by MMV390048, using the ADP-Glo™ Kinase Assay. RESULTS: We demonstrate a potential link between the malformations seen in the embryofetal developmental (EFD) studies and inhibition of the mammalian PI4Kß paralogue, as well as inhibition of the off-target kinases MAP4K4 and MINK1. PI3Kγ may also play a role in the embryofetal toxicity as its in vitro inhibition is covered by in vivo exposure. The exposures in the rabbit embryofetal development studies did not reach concentrations likely to cause PI4K inhibition. Overall, we hypothesize that the in vivo malformations observed could be due to inhibition of the PI4K target in combination with the off-targets, MAP4K4 and MINK1. However, these relationships are by association and not mechanistically proven. CONCLUSIONS: Deciphering if the EFD effects are dependent on PI4K inhibition, and/or via inhibition of other off-target kinases will require the generation of novel, more potent, and more specific PI4K inhibitors.


Assuntos
Hérnia Diafragmática , Malária , Plasmodium , 1-Fosfatidilinositol 4-Quinase , Animais , Malária/tratamento farmacológico , Mamíferos , Coelhos , Ratos
5.
Br J Clin Pharmacol ; 88(1): 128-137, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075612

RESUMO

AIMS: Given the increasing emergence of drug resistance in Plasmodium, new antimalarials are urgently required. P218 is an aminopyridine that inhibits dihydrofolate reductase being developed as a malaria chemoprotective drug. Assessing the effect of new compounds on cardiac intervals is key during early drug development to determine their cardiac safety. METHODS: This double-blind, randomized, placebo-controlled, parallel group study evaluated the effect of P218 on electrocardiographic parameters following oral administration of seven single-ascending doses up to 1000 mg in 56 healthy volunteers. Participants were randomized to treatment or placebo at a 3:1 ratio. P218 was administered in the fasted state with standardized lunch served 4 hours after dosing. 12-lead ECGs were recorded in triplicate at regular intervals on the test day, and at 48, 72, 120, 168, 192 and 240 hours thereafter. Blood samples for pharmacokinetic evaluations were collected at similar time points. Concentration-effect modelling was used to assess the effect of P218 and its metabolites on cardiac intervals. RESULTS: Concentration-effect analysis showed that P218 does not prolong the QTcF, J-Tpeak or TpTe interval at all doses tested. No significant changes in QRS or PR intervals were observed. Two-sided 90% confidence intervals of subinterval effects of P218 and its metabolites were consistently below the regulatory concern threshold for all doses. Study sensitivity was confirmed by significant shortening of QTcF after a meal. CONCLUSION: Oral administration of P218 up to 1000 mg does not prolong QTcF and does not significantly change QRS or PR intervals, suggesting low risk for drug-induced proarrhythmia.


Assuntos
Antimaláricos , Malária , Antimaláricos/efeitos adversos , Estudos Cross-Over , Relação Dose-Resposta a Droga , Método Duplo-Cego , Eletrocardiografia , Voluntários Saudáveis , Frequência Cardíaca , Humanos , Malária/tratamento farmacológico , Masculino
6.
Am J Trop Med Hyg ; 104(4): 1348-1358, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33556040

RESUMO

P218 is a highly selective dihydrofolate reductase inhibitor with potent in vitro activity against pyrimethamine-resistant Plasmodium falciparum. This single-center, randomized, double-blind, placebo-controlled phase Ib study evaluated P218 safety, pharmacokinetics, and chemoprotective efficacy in a P. falciparum sporozoite (PfSPZ) volunteer infection study (VIS). Consecutive dose safety and tolerability were evaluated (cohort 1), with participants receiving two oral doses of P218 1,000 mg 48 hours apart (n = 6), or placebo (n = 2). P218 chemoprotective efficacy was assessed (cohorts 2 and 3) with direct venous inoculation of 3,200 aseptic, cryopreserved PfSPZ (NF54 strain) followed 2 hours later with two P218 doses of 1,000 mg (cohort 2, n = 9) or 100 mg (cohort 3, n = 9) administered 48 hours apart, or placebo (n = 6). Parasitemia was assessed from day 7 using quantitative PCR targeting the var gene acidic terminal sequence (varATS qPCR). By day 28, all participants in cohort 2 (P218 1,000 mg) and 8/9 in cohort 3 (P218 100 mg) were sterilely protected post-PfSPZ VIS, confirming P218 P. falciparum chemoprotective activity. With placebo, all six participants became parasitemic (geometric mean time to positive parasitemia 10.6 days [90% CI: 9.9-11.4]). P218 pharmacokinetics were similar in participants with or without induced infection. Adverse events of any cause occurred in 45.8% (11/24) of participants who received P218 and 50.0% (4/8) following placebo; all were mild/moderate in severity, transient, and self-limiting. There were no clinically relevant changes in laboratory parameters, vital signs, or electrocardiograms. P218 displayed excellent chemoprotective efficacy against P. falciparum with favorable safety and tolerability.


Assuntos
Antimaláricos/administração & dosagem , Antagonistas do Ácido Fólico/administração & dosagem , Malária Falciparum/prevenção & controle , Plasmodium falciparum/efeitos dos fármacos , Esporozoítos/efeitos dos fármacos , Voluntários , Adulto , Animais , Antimaláricos/uso terapêutico , Estudos de Coortes , Método Duplo-Cego , Feminino , Antagonistas do Ácido Fólico/uso terapêutico , Experimentação Humana , Humanos , Malária Falciparum/tratamento farmacológico , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Parasitemia/tratamento farmacológico , Placebos/administração & dosagem , Distribuição Aleatória
7.
Clin Infect Dis ; 71(10): e657-e664, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-32239164

RESUMO

BACKGROUND: MMV390048 is the first Plasmodium phosphatidylinositol 4-kinase inhibitor to reach clinical development as a new antimalarial. We aimed to characterize the safety, pharmacokinetics, and antimalarial activity of a tablet formulation of MMV390048. METHODS: A 2-part, phase 1 trial was conducted in healthy adults. Part 1 was a double-blind, randomized, placebo-controlled, single ascending dose study consisting of 3 cohorts (40, 80, 120 mg MMV390048). Part 2 was an open-label volunteer infection study using the Plasmodium falciparum induced blood-stage malaria model consisting of 2 cohorts (40 mg and 80 mg MMV390048). RESULTS: Twenty four subjects were enrolled in part 1 (n = 8 per cohort, randomized 3:1 MMV390048:placebo) and 15 subjects were enrolled in part 2 (40 mg [n = 7] and 80 mg [n = 8] cohorts). One subject was withdrawn from part 2 (80 mg cohort) before dosing and was not included in analyses. No serious or severe adverse events were attributed to MMV390048. The rate of parasite clearance was greater in subjects administered 80 mg compared to those administered 40 mg (clearance half-life 5.5 hours [95% confidence interval {CI}, 5.2-6.0 hours] vs 6.4 hours [95% CI, 6.0-6.9 hours]; P = .005). Pharmacokinetic/pharmacodynamic modeling estimated a minimum inhibitory concentration of 83 ng/mL and a minimal parasiticidal concentration that would achieve 90% of the maximum effect of 238 ng/mL, and predicted that a single 120-mg dose would achieve an adequate clinical and parasitological response with 92% certainty. CONCLUSIONS: The safety, pharmacokinetics, and pharmacodynamics of MMV390048 support its further development as a partner drug of a single-dose combination therapy for malaria. CLINICAL TRIALS REGISTRATION: NCT02783820 (part 1); NCT02783833 (part 2).


Assuntos
Antimaláricos/uso terapêutico , Malária Falciparum , 1-Fosfatidilinositol 4-Quinase , Adulto , Aminopiridinas , Antimaláricos/efeitos adversos , Relação Dose-Resposta a Droga , Método Duplo-Cego , Humanos , Malária Falciparum/tratamento farmacológico , Plasmodium , Sulfonas , Voluntários
8.
Artigo em Inglês | MEDLINE | ID: mdl-31932368

RESUMO

MMV390048 is a novel antimalarial compound that inhibits Plasmodium phosphatidylinositol-4-kinase. The safety, tolerability, pharmacokinetic profile, and antimalarial activity of MMV390048 were determined in healthy volunteers in three separate studies. A first-in-human, double-blind, randomized, placebo-controlled, single-ascending-dose study was performed. Additionally, a volunteer infection study investigated the antimalarial activity of MMV390048 using the Plasmodium falciparum induced blood-stage malaria (IBSM) model. Due to the high pharmacokinetic variability with the powder-in-bottle formulation used in both of these studies, a third study was undertaken to select a tablet formulation of MMV390048 to take forward into future studies. MMV390048 was generally well tolerated when administered as a single oral dose up to 120 mg, with rapid absorption and a long elimination half-life. Twelve adverse events were considered to be potentially related to MMV390048 in the first-in-human study but with no obvious correlation between these and MMV390048 dose or exposure. Although antimalarial activity was evident in the IBSM study, rapid recrudescence occurred in most subjects after treatment with 20 mg MMV390048, a dose expected to be subtherapeutic. Reformulation of MMV390048 into two tablet formulations (tartaric acid and Syloid) resulted in significantly reduced intersubject pharmacokinetic variability. Overall, the results of this study suggest that MMV390048 is well tolerated in humans, and the pharmacokinetic properties of the compound indicate that it has the potential to be used for antimalarial prophylaxis or inclusion in a single-dose cure. MMV390048 is currently being tested in a phase 2a study in Ethiopian adults with acute, uncomplicated falciparum or vivax malaria monoinfection. (The three clinical trials described here were each registered with ClinicalTrials.gov as follows: first-in-human study, registration no. NCT02230579; IBSM study, registration no. NCT02281344; and formulation optimization study, registration no. NCT02554799.).


Assuntos
Aminopiridinas/farmacologia , Antimaláricos/farmacologia , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Sulfonas/farmacologia , 1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , Adulto , Aminopiridinas/efeitos adversos , Aminopiridinas/farmacocinética , Antimaláricos/efeitos adversos , Antimaláricos/farmacocinética , Ensaios Clínicos Fase I como Assunto , Método Duplo-Cego , Feminino , Voluntários Saudáveis , Humanos , Masculino , Sulfonas/efeitos adversos , Sulfonas/farmacocinética
9.
Br J Clin Pharmacol ; 86(6): 1113-1124, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31925817

RESUMO

AIMS: This first-in-human clinical trial of P218, a novel dihydrofolate reductase inhibitor antimalarial candidate, assessed safety, tolerability, pharmacokinetics and food effects in healthy subjects. METHODS: The study consisted of two parts. Part A was a double-blind, randomized, placebo-controlled, parallel group, ascending dose study comprising seven fasted cohorts. Eight subjects/cohort were randomized (3:1) to receive either a single oral dose of P218 (10, 30, 100, 250, 500, 750 and 1000 mg) or placebo. Part B was an open-label, cross-over, fed/fasted cohort (eight subjects) that received a 250 mg single dose of P218 in two treatment periods. RESULTS: P218 was generally well tolerated across all doses; 21 treatment-emergent adverse events occurred in 15/64 subjects. Nine adverse events in five subjects, all of mild intensity, were judged drug related. No clinically relevant abnormalities in ECG, vital signs or laboratory tests changes were observed. P218 was rapidly absorbed, with Cmax achieved between 0.5 and 2 hours post dose. Plasma concentrations declined bi-exponentially with half-life values ranging from 3.1 to 6.7 hours (10 and 30 mg), increasing up to 8.9 to 19.6 hours (doses up to 1000 mg). Exposure values increased dose-proportionally between 100 and 1000 mg for P218 (parent) and three primary metabolites (P218 ß-acyl glucuronide, P218-OH and P218-OH ß-acyl glucuronide). Co-administration of P218 with food reduced Cmax by 35% and delayed absorption by 1 hour, with no significant impact on AUC. CONCLUSION: P218 displayed favourable safety, tolerability and pharmacokinetics. In view of its short half-life, a long-acting formulation will be needed for malaria chemoprotection.


Assuntos
Malária , Administração Oral , Área Sob a Curva , Estudos Cross-Over , Relação Dose-Resposta a Droga , Método Duplo-Cego , Meia-Vida , Humanos , Malária/tratamento farmacológico , Malária/prevenção & controle
11.
Artigo em Inglês | MEDLINE | ID: mdl-29941635

RESUMO

The 2-aminopyridine MMV048 was the first drug candidate inhibiting Plasmodium phosphatidylinositol 4-kinase (PI4K), a novel drug target for malaria, to enter clinical development. In an effort to identify the next generation of PI4K inhibitors, the series was optimized to improve properties such as solubility and antiplasmodial potency across the parasite life cycle, leading to the 2-aminopyrazine UCT943. The compound displayed higher asexual blood stage, transmission-blocking, and liver stage activities than MMV048 and was more potent against resistant Plasmodium falciparum and Plasmodium vivax clinical isolates. Excellent in vitro antiplasmodial activity translated into high efficacy in Plasmodium berghei and humanized P. falciparum NOD-scid IL-2Rγ null mouse models. The high passive permeability and high aqueous solubility of UCT943, combined with low to moderate in vivo intrinsic clearance, resulted in sustained exposure and high bioavailability in preclinical species. In addition, the predicted human dose for a curative single administration using monkey and dog pharmacokinetics was low, ranging from 50 to 80 mg. As a next-generation Plasmodium PI4K inhibitor, UCT943, based on the combined preclinical data, has the potential to form part of a single-exposure radical cure and prophylaxis (SERCaP) to treat, prevent, and block the transmission of malaria.

12.
Sci Transl Med ; 9(387)2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446690

RESUMO

As part of the global effort toward malaria eradication, phenotypic whole-cell screening revealed the 2-aminopyridine class of small molecules as a good starting point to develop new antimalarial drugs. Stemming from this series, we found that the derivative, MMV390048, lacked cross-resistance with current drugs used to treat malaria. This compound was efficacious against all Plasmodium life cycle stages, apart from late hypnozoites in the liver. Efficacy was shown in the humanized Plasmodium falciparum mouse model, and modest reductions in mouse-to-mouse transmission were achieved in the Plasmodium berghei mouse model. Experiments in monkeys revealed the ability of MMV390048 to be used for full chemoprotection. Although MMV390048 was not able to eliminate liver hypnozoites, it delayed relapse in a Plasmodium cynomolgi monkey model. Both genomic and chemoproteomic studies identified a kinase of the Plasmodium parasite, phosphatidylinositol 4-kinase, as the molecular target of MMV390048. The ability of MMV390048 to block all life cycle stages of the malaria parasite suggests that this compound should be further developed and may contribute to malaria control and eradication as part of a single-dose combination treatment.


Assuntos
1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , Aminopiridinas/uso terapêutico , Antimaláricos/uso terapêutico , Sulfonas/uso terapêutico , Aminopiridinas/farmacologia , Animais , Antimaláricos/farmacologia , Feminino , Malária/tratamento farmacológico , Malária/enzimologia , Masculino , Camundongos , Camundongos SCID , Testes de Sensibilidade Parasitária , Plasmodium/efeitos dos fármacos , Plasmodium/patogenicidade , Sulfonas/farmacologia
13.
J Labelled Comp Radiopharm ; 59(14): 680-688, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27646069

RESUMO

The antimalarial compound MMV390048 ([14 C]-11) was labeled with carbon-14 isotope via a 3-step synthesis. It was obtained in a 15.5% radiochemical overall yield from carbon-14 labeled methyl iodide with a radiochemical purity of >99%. After single oral administration of [14 C]-11 to albino and pigmented rats its tissue distribution profile was studied. Tissue distribution results showed high local exposure in the GI tract and excretory organs but low exposure of all other tissues. The radioactivity uptake was higher in the eyes of the pigmented rats than in the eyes of the albino rats at all-time points. The highest accumulation reached in the eyes of the pigmented rats was 0.46% at 6 hours. However, these levels are still very low as compared to the other organs studied. There was very little radioactivity from MMV390048 ([14 C]-11) present in the skin of both the albino and pigmented rats. The results obtained are supportive of further development of MMV390048 as a potential antimalarial compound.


Assuntos
Aminopiridinas/síntese química , Aminopiridinas/farmacocinética , Antimaláricos/síntese química , Antimaláricos/farmacocinética , Radioisótopos de Carbono/química , Sulfonas/síntese química , Sulfonas/farmacocinética , Aminopiridinas/química , Animais , Antimaláricos/química , Feminino , Marcação por Isótopo , Masculino , Ratos , Sulfonas/química , Distribuição Tecidual
14.
Antimicrob Agents Chemother ; 59(9): 5555-60, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26124159

RESUMO

ELQ-300 is a preclinical candidate that targets the liver and blood stages of Plasmodium falciparum, as well as the forms that are crucial to transmission of disease: gametocytes, zygotes, and ookinetes. A significant obstacle to the clinical development of ELQ-300 is related to its physicochemical properties. Its relatively poor aqueous solubility and high crystallinity limit absorption to the degree that only low blood concentrations can be achieved following oral dosing. While these low blood concentrations are sufficient for therapy, the levels are too low to establish an acceptable safety margin required by regulatory agencies for clinical development. One way to address the challenging physicochemical properties of ELQ-300 is through the development of prodrugs. Here, we profile ELQ-337, a bioreversible O-linked carbonate ester prodrug of the parent molecule. At the molar equivalent dose of 3 mg/kg of body weight, the delivery of ELQ-300 from ELQ-337 is enhanced by 3- to 4-fold, reaching a maximum concentration of drug in serum (C max) of 5.9 µM by 6 h after oral administration, and unlike ELQ-300 at any dose, ELQ-337 provides single-dose cures of patent malaria infections in mice at low-single-digit milligram per kilogram doses. Our findings show that the prodrug strategy represents a viable approach to overcome the physicochemical limitations of ELQ-300 to deliver the active drug to the bloodstream at concentrations sufficient for safety and toxicology studies, as well as achieving single-dose cures.


Assuntos
Antimaláricos/química , Antimaláricos/uso terapêutico , Malária/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Quinolonas/uso terapêutico , Animais , Cristalografia por Raios X , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Feminino , Camundongos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/patogenicidade , Pró-Fármacos/química , Quinolonas/química
15.
Bioorg Med Chem Lett ; 20(5): 1516-9, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20149651

RESUMO

The discovery of a novel series of S1P1 agonists is described. Starting from a micromolar HTS positive, iterative optimization gave rise to several single-digit nanomolar S1P1 agonists. The compounds were able to induce internalization of the S1P1 receptor, and a selected compound was shown to be able to induce lymphopenia in mice after oral dosing.


Assuntos
Antineoplásicos/química , Receptores de Lisoesfingolipídeo/agonistas , Administração Oral , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Descoberta de Drogas , Cloridrato de Fingolimode , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Microssomos Hepáticos/metabolismo , Propilenoglicóis/química , Propilenoglicóis/farmacologia , Ratos , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Esfingosina/química , Esfingosina/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA