Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Prep Biochem Biotechnol ; 45(8): 785-95, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25181638

RESUMO

In this study, wheat straw was pretreated with a microfluidizer to improve its enzymatic hydrolysis and ethanol yields. The pretreatment was performed at various pressures (500, 1000, and 1500 bar) and solid loadings (1, 2, and 3%). The microfluidized biomass was then subjected to hydrolysis and simultaneous saccharification and co-fermentation (SSCF) experiments at different enzyme loadings (5, 10, and 15 FPU/g dry wheat straw) using a mutant yeast. The results indicated that the microfluidization method alters the structure of biomass and leads to a reduction in lignin content. The samples pretreated at 1% solid loading contained the minimum lignin concentration and provided the maximum sugar and ethanol yields. These results signified that the microfluidization method is more effective on biomass at low solid loadings. The process conditions were optimized for higher ethanol and sugar yields using response surface methodology (RSM). The optimum pressure and solid and enzyme loadings were found as 1500 bar, 1%, and 15 FPU/g dry wheat straw, respectively. The yields obtained at this condition were 82%, 94%, and 65% for glucose, xylose, and ethanol, respectively. High sugar yields implied that microfluidization is an effective pretreatment method for cellulosic ethanol production. On the other hand, low ethanol yield may indicate that the microorganism was sensitive to inhibitory compounds present in the fermentation medium.


Assuntos
Biomassa , Celulose/química , Etanol/metabolismo , Hidrolases/química , Saccharomyces cerevisiae/crescimento & desenvolvimento , Glucose/química , Hidrólise , Triticum , Xilose/química
2.
Environ Technol ; 35(1-4): 278-85, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24600866

RESUMO

Clostridium acetobutylicum DSM 792, C. acetobutylicum DSM 1731 and two newly isolated bacteria defined as the members of genus Clostridium - based on the 16S rRNA analysis and biochemical traits - were characterized with regard to their hydrogen production in media containing increasing beet molasses concentrations. The highest hydrogen yield was observed for C. acetobutylicum DSM 792 with a yield of 2.8 mol H2 mol-1 hexose in medium including 60 g L-1 molasses. This bacterium also produced the maximum amount of hydrogen (5908.8 mL L-1) at the same molasses concentration. A slightly lower hydrogen yield was measured for C. acetobutylicum DSM 1731 (2.5 mol H2 mol-1 hexose) when grown on 40 g L-1 molasses. The new isolates Clostridium roseum C and Clostridium saccharoperbutylacetonicum PF produced hydrogen with yields of 2.0 mol H2 mol-1 hexose at 40 and 60 g L-1 molasses and 2.1 mol H2 mol-1 hexose at 40 gL-1 molasses, respectively.


Assuntos
Beta vulgaris/microbiologia , Biocombustíveis/microbiologia , Clostridium/classificação , Clostridium/fisiologia , Hidrogênio/isolamento & purificação , Hidrogênio/metabolismo , Melaço/microbiologia , Clostridium/isolamento & purificação , Especificidade da Espécie
3.
J Environ Manage ; 88(1): 76-82, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17363134

RESUMO

Sulfate-reducing bacteria (SRB) that could grow on modified Postgate C medium (PC) containing chromium(VI) were isolated from industrial wastewaters and their chromium(VI) reduction capacities were investigated as a function of changes in the initial pH values, chromium, sulfate, NaCl and reactive dye concentrations. The optimum pH value at 50 mg l(-1) initial chromium(VI) concentration was determined to be 8. Chromium(VI) reduction by SRB was investigated at 22.7-98.4 mg l(-1) initial chromium(VI) concentrations. At the end of the experiments, the mixed cultures of SRB were found to reduce within 2-6 days more than 99% of the initial chromium(VI) levels, which ranged from 22.7 to 74.9 mg l(-1). The effects of the initial 0-9.0 g l(-1) concentrations of disodium sulfate and 0-6% (w/v) concentrations of NaCI to chromium reduction showed that the lowest concentrations of sulfate and NaCI were the best for chromium reduction in the PC medium including 50 mg l(-1) chromium(VI). Chromium(VI) reduction in 50 mg l(-1) and 25-100 mg l(-1) Remazol Blue, Reactive Black B or Reactive Red RB containing media were also investigated. In the experiments, 25-30% of the initial dye concentrations and 95% of the chromium(VI) was removed from the medium at the end of 72-h and 24-h incubation periods, respectively.


Assuntos
Bactérias/metabolismo , Cromo/metabolismo , Corantes/metabolismo , Indústria Têxtil , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Biodegradação Ambiental , Cromo/química , Corantes/química , Resíduos Industriais/análise , Estrutura Molecular , Fatores de Tempo , Poluição Química da Água/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA