RESUMO
We describe a 'clock control unit' based on a dual-axis cubic cavity (DACC) for the frequency stabilisation of lasers involved in a strontium optical lattice clock. The DACC, which ultimately targets deployment in space applications, provides a short-term stable reference for all auxiliary lasers-i.e. cooling, clear-out, and optical lattice-in a single multi-band cavity. Long-term cavity drift is compensated by a feed-forward scheme exploiting a fixed physical relation to an orthogonal second cavity axis; either by reference to an ultrastable 698 nm clock laser, or by exploiting the differential drift between orthogonal axes extracted by a single laser in common view. Via a change of mirror set in the cavity axis accessed by the clock laser, the system could also provide stabilisation for sub-Hz linewidths at the 698 nm clock wavelength, fulfilling all stabilisation requirements of the clock.
RESUMO
We present a field-programmable gate array (FPGA) based control system that has been implemented to control a strontium optical lattice clock at the National Physical Laboratory, UK. Bespoke printed circuit boards have been designed and manufactured, including an 8-channel, 16-bit digital to analog converter board with a 2 µs update rate and a 4-channel direct-digital synthesis board clocked at 1 GHz. Each board includes its own FPGA with 28 digital output lines available alongside the specialized analog or radio frequency outputs. The system is scalable to a large number of control lines by stacking the individual boards in a master-slave arrangement. The timing of the digital and analog outputs is based on the FPGA clock and is thus very predictable and exhibits low jitter. A particular advantage of our hardware is its large data buffers that, when combined with a pseudoclock structure, allow complex waveforms to be created. A high reliability of the system has been demonstrated during extended atomic clock frequency comparisons.