Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 22(1): e3002462, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38289969

RESUMO

Mutations in the gene encoding Cu-Zn superoxide dismutase 1 (SOD1) cause a subset of familial amyotrophic lateral sclerosis (fALS) cases. A shared effect of these mutations is that SOD1, which is normally a stable dimer, dissociates into toxic monomers that seed toxic aggregates. Considerable research effort has been devoted to developing compounds that stabilize the dimer of fALS SOD1 variants, but unfortunately, this has not yet resulted in a treatment. We hypothesized that cyclic thiosulfinate cross-linkers, which selectively target a rare, 2 cysteine-containing motif, can stabilize fALS-causing SOD1 variants in vivo. We created a library of chemically diverse cyclic thiosulfinates and determined structure-cross-linking-activity relationships. A pre-lead compound, "S-XL6," was selected based upon its cross-linking rate and drug-like properties. Co-crystallographic structure clearly establishes the binding of S-XL6 at Cys 111 bridging the monomers and stabilizing the SOD1 dimer. Biophysical studies reveal that the degree of stabilization afforded by S-XL6 (up to 24°C) is unprecedented for fALS, and to our knowledge, for any protein target of any kinetic stabilizer. Gene silencing and protein degrading therapeutic approaches require careful dose titration to balance the benefit of diminished fALS SOD1 expression with the toxic loss-of-enzymatic function. We show that S-XL6 does not share this liability because it rescues the activity of fALS SOD1 variants. No pharmacological agent has been proven to bind to SOD1 in vivo. Here, using a fALS mouse model, we demonstrate oral bioavailability; rapid engagement of SOD1G93A by S-XL6 that increases SOD1G93A's in vivo half-life; and that S-XL6 crosses the blood-brain barrier. S-XL6 demonstrated a degree of selectivity by avoiding off-target binding to plasma proteins. Taken together, our results indicate that cyclic thiosulfinate-mediated SOD1 stabilization should receive further attention as a potential therapeutic approach for fALS.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Camundongos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Cisteína/genética , Mutação , Superóxido Dismutase/genética , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética
2.
Anal Chem ; 94(23): 8416-8425, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35622908

RESUMO

CD24Fc is a homodimeric recombinant Fc-fusion protein comprised of human CD24 connected to immunoglobulin G1 (IgG1) Fc fragment. CD24 is heavily glycosylated, and its biological function is considered mainly mediated by its glycosylation. Identification of the O-glycosylation sites would facilitate an in-depth understanding of the functional role of O-glycans in CD24. However, the presence of clustered mucin-type O-glycans together with N-glycans makes the determination of O-glycosylation sites and abundance very challenging. In this study, two sets of liquid chromatography-mass spectrometry (LC-MS) workflows were developed for the comprehensive characterization of O-glycosylation in CD24: (1) Fractionation and collision-induced dissociation (CID) workflow involving multienzyme digestion, fractionation, OpeRATOR/SialEXO digestion, and CID analysis; (2) Direct OpeRATOR/SialEXO digestion followed by electron-transfer/higher-energy collision dissociation (EThcD) analysis. The precise O-glycosylation sites were identified in CD24 for the first time, and the site occupancy was assessed. A total of 12 O-glycosylation sites were identified. Seven glycosylation sites were identified by both workflows, and five additional sites were identified only by the EThcD workflow. The predominant O-glycosylation site in CD24 was Thr25 followed by Thr15. The CID workflow provided an overall relative quantitation of O-glycoforms at the CD24 level and site localization for singly O-glycosylated peptides. The EThcD workflow directly identified glycosylation sites by tandem mass spectrometry (MS/MS) for singly, doubly, and triply O-glycosylated peptides. Together, both workflows validated each other's results and can be applied to a complex mucin-type O-glycosylation site analysis of other glycoproteins and Fc-fusion therapeutics.


Assuntos
Fragmentos Fc das Imunoglobulinas , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Glicopeptídeos/química , Glicosilação , Humanos , Polissacarídeos , Proteínas Recombinantes de Fusão/química , Fluxo de Trabalho
3.
Anal Biochem ; 622: 114172, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33766578

RESUMO

The development of comprehensive methods to characterize unpaired cysteines in monoclonal antibodies (mAbs) is very important for understanding structural heterogeneity, impurity, and stability. In this paper, unpaired cysteines observed in a therapeutic antibody (mAb1) were thoroughly studied by Liquid Chromatography-Mass Spectrometry (LC-MS) methods at the intact mAb, domain, and peptide levels. Three cysteine variants were observed at the intact mAb level with each variant containing two unpaired cysteines. Variants containing four or six unpaired cysteines were not observed. Domain analysis indicated that two Fab variants, each containing two unpaired cysteines, were present while the third variant contained two unpaired cysteines on the Fc region. Peptide mapping analysis localized the six unpaired cysteines to Cys22/Cys96, Cys146/Cys202, and Cys369/Cys427 in the heavy chain. No significant changes were observed for these unpaired cysteines in mAb1 under high pH and heat-stressed conditions. Structural analysis and molecular modeling revealed that these unpaired cysteines were buried inside the three-dimensional structure. The integrated LC-MS methods together with stress studies and structural analysis may potentially be applied to the analysis of unpaired cysteines in other mAbs.


Assuntos
Anticorpos Monoclonais/química , Cromatografia Líquida/métodos , Cisteína/química , Imunoglobulina G/química , Espectrometria de Massas em Tandem/métodos , Animais , Células CHO , Cricetulus , Dissulfetos/química , Humanos , Cadeias Pesadas de Imunoglobulinas/química , Modelos Moleculares , Mapeamento de Peptídeos
4.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33653954

RESUMO

Ras dimerization is critical for Raf activation. Here we show that the Ras binding domain of Raf (Raf-RBD) induces robust Ras dimerization at low surface densities on supported lipid bilayers and, to a lesser extent, in solution as observed by size exclusion chromatography and confirmed by SAXS. Community network analysis based on molecular dynamics simulations shows robust allosteric connections linking the two Raf-RBD D113 residues located in the Galectin scaffold protein binding site of each Raf-RBD molecule and 85 Å apart on opposite ends of the dimer complex. Our results suggest that Raf-RBD binding and Ras dimerization are concerted events that lead to a high-affinity signaling complex at the membrane that we propose is an essential unit in the macromolecular assembly of higher order Ras/Raf/Galectin complexes important for signaling through the Ras/Raf/MEK/ERK pathway.


Assuntos
Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas p21(ras)/química , Quinases raf/química , Galectinas/química , Galectinas/genética , Galectinas/metabolismo , Humanos , Domínios Proteicos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Quinases raf/genética , Quinases raf/metabolismo
5.
Nat Methods ; 16(7): 587-594, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31249407

RESUMO

One gene can give rise to many functionally distinct proteoforms, each of which has a characteristic molecular mass. Top-down mass spectrometry enables the analysis of intact proteins and proteoforms. Here members of the Consortium for Top-Down Proteomics provide a decision tree that guides researchers to robust protocols for mass analysis of intact proteins (antibodies, membrane proteins and others) from mixtures of varying complexity. We also present cross-platform analytical benchmarks using a protein standard sample, to allow users to gauge their proficiency.


Assuntos
Benchmarking , Espectrometria de Massas/métodos , Proteínas/química , Desnaturação Proteica , Processamento de Proteína Pós-Traducional , Proteômica
6.
J Am Chem Soc ; 140(24): 7377-7380, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29851341

RESUMO

This work addresses the need for chemical tools that can selectively form cross-links. Contemporary thiol-selective cross-linkers, for example, modify all accessible thiols, but only form cross-links between a subset. The resulting terminal "dead-end" modifications of lone thiols are toxic, confound cross-linking-based studies of macromolecular structure, and are an undesired, and currently unavoidable, byproduct in polymer synthesis. Using the thiol pair of Cu/Zn-superoxide dismutase (SOD1), we demonstrated that cyclic disulfides, including the drug/nutritional supplement lipoic acid, efficiently cross-linked thiol pairs but avoided dead-end modifications. Thiolate-directed nucleophilic attack upon the cyclic disulfide resulted in thiol-disulfide exchange and ring cleavage. The resulting disulfide-tethered terminal thiolate moiety either directed the reverse reaction, releasing the cyclic disulfide, or participated in oxidative disulfide (cross-link) formation. We hypothesized, and confirmed with density functional theory (DFT) calculations, that mono- S-oxo derivatives of cyclic disulfides formed a terminal sulfenic acid upon ring cleavage that obviated the previously rate-limiting step, thiol oxidation, and accelerated the new rate-determining step, ring cleavage. Our calculations suggest that the origin of accelerated ring cleavage is improved frontier molecular orbital overlap in the thiolate-disulfide interchange transition. Five- to seven-membered cyclic thiosulfinates were synthesized and efficiently cross-linked up to 104-fold faster than their cyclic disulfide precursors; functioned in the presence of biological concentrations of glutathione; and acted as cell-permeable, potent, tolerable, intracellular cross-linkers. This new class of thiol cross-linkers exhibited click-like attributes including, high yields driven by the enthalpies of disulfide and water formation, orthogonality with common functional groups, water-compatibility, and ring strain-dependence.


Assuntos
Reagentes de Ligações Cruzadas/química , Dissulfetos/química , Compostos de Sulfidrila/química , Ácidos Sulfínicos/química , Superóxido Dismutase-1/química , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/síntese química , Dissulfetos/síntese química , Humanos , Modelos Químicos , Oxirredução , Teoria Quântica , Ácidos Sulfênicos/química , Ácidos Sulfínicos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA