Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 7(24)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34108207

RESUMO

The chemistry of copper and iron plays a critical role in normal brain function. A variety of enzymes and proteins containing positively charged Cu+, Cu2+, Fe2+, and Fe3+ control key processes, catalyzing oxidative metabolism and neurotransmitter and neuropeptide production. Here, we report the discovery of elemental (zero-oxidation state) metallic Cu0 accompanying ferromagnetic elemental Fe0 in the human brain. These nanoscale biometal deposits were identified within amyloid plaque cores isolated from Alzheimer's disease subjects, using synchrotron x-ray spectromicroscopy. The surfaces of nanodeposits of metallic copper and iron are highly reactive, with distinctly different chemical and magnetic properties from their predominant oxide counterparts. The discovery of metals in their elemental form in the brain raises new questions regarding their generation and their role in neurochemistry, neurobiology, and the etiology of neurodegenerative disease.

2.
Chem Commun (Camb) ; 57(1): 69-72, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33337460

RESUMO

The stable complex [bis(toluene-3,4-dithiolato)copper(iii)][NEt3H] has been synthesised and characterised as a square-planar Cu(iii) complex by X-ray photoelectron spectroscopy, cyclic voltammetry and DFT calculations. Intriguingly, when fragmented in FTICR-MS, an unusual [(toluene-3,4-dithiolate)Cu(iii)(peroxide)]- complex is formed by reaction with oxygen. Natural 1,2-dithiolenes known to bind molybdenum might stabilise Cu(iii) in vivo.

3.
Chem Sci ; 11(48): 12888-12917, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34123239

RESUMO

Metals play vital roles in nutrients and medicines and provide chemical functionalities that are not accessible to purely organic compounds. At least 10 metals are essential for human life and about 46 other non-essential metals (including radionuclides) are also used in drug therapies and diagnostic agents. These include platinum drugs (in 50% of cancer chemotherapies), lithium (bipolar disorders), silver (antimicrobials), and bismuth (broad-spectrum antibiotics). While the quest for novel and better drugs is now as urgent as ever, drug discovery and development pipelines established for organic drugs and based on target identification and high-throughput screening of compound libraries are less effective when applied to metallodrugs. Metallodrugs are often prodrugs which undergo activation by ligand substitution or redox reactions, and are multi-targeting, all of which need to be considered when establishing structure-activity relationships. We focus on early-stage in vitro drug discovery, highlighting the challenges of evaluating anticancer, antimicrobial and antiviral metallo-pharmacophores in cultured cells, and identifying their targets. We highlight advances in the application of metal-specific techniques that can assist the preclinical development, including synchrotron X-ray spectro(micro)scopy, luminescence, and mass spectrometry-based methods, combined with proteomic and genomic (metallomic) approaches. A deeper understanding of the behavior of metals and metallodrugs in biological systems is not only key to the design of novel agents with unique mechanisms of action, but also to new understanding of clinically-established drugs.

4.
Chem Commun (Camb) ; 53(3): 549-552, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27973637

RESUMO

Nitric oxide is a vital signaling molecule that controls blood flow and oxygenation and nitrite serves as an important reservoir for nitric oxide in biology. While copper containing enzymes are known to reduce nitrite to nitric oxide, herein we report a new pathway to release nitric oxide via oxygen atom transfer from nitrite at a copper(ii) site.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA