Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cereb Cortex ; 33(10): 6120-6131, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36587288

RESUMO

In the last decade, the exclusive role of the hippocampus in human declarative learning has been challenged. Recently, we have shown that gains in performance observed in motor sequence learning (MSL) during the quiet rest periods interleaved with practice are associated with increased hippocampal activity, suggesting a role of this structure in motor memory reactivation. Yet, skill also develops offline as memory stabilizes after training and overnight. To examine whether the hippocampus contributes to motor sequence memory consolidation, here we used a network neuroscience strategy to track its functional connectivity offline 30 min and 24 h post learning using resting-state functional magnetic resonance imaging. Using a graph-analytical approach we found that MSL transiently increased network modularity, reflected in an increment in local information processing at 30 min that returned to baseline at 24 h. Within the same time window, MSL decreased the connectivity of a hippocampal-sensorimotor network, and increased the connectivity of a striatal-premotor network in an antagonistic manner. Finally, a supervised classification identified a low-dimensional pattern of hippocampal connectivity that discriminated between control and MSL data with high accuracy. The fact that changes in hippocampal connectivity were detected shortly after training supports a relevant role of the hippocampus in early stages of motor memory consolidation.


Assuntos
Conectoma , Hipocampo , Consolidação da Memória , Consolidação da Memória/fisiologia , Hipocampo/fisiologia , Hipocampo/ultraestrutura , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Imageamento por Ressonância Magnética , Rede Nervosa/fisiologia , Rede Nervosa/ultraestrutura
2.
PNAS Nexus ; 1(3): pgac093, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35990802

RESUMO

At the beginning of 2020, COVID-19 became a global problem. Despite all the efforts to emphasize the relevance of preventive measures, not everyone adhered to them. Thus, learning more about the characteristics determining attitudinal and behavioral responses to the pandemic is crucial to improving future interventions. In this study, we applied machine learning on the multinational data collected by the International Collaboration on the Social and Moral Psychology of COVID-19 (N = 51,404) to test the predictive efficacy of constructs from social, moral, cognitive, and personality psychology, as well as socio-demographic factors, in the attitudinal and behavioral responses to the pandemic. The results point to several valuable insights. Internalized moral identity provided the most consistent predictive contribution-individuals perceiving moral traits as central to their self-concept reported higher adherence to preventive measures. Similar results were found for morality as cooperation, symbolized moral identity, self-control, open-mindedness, and collective narcissism, while the inverse relationship was evident for the endorsement of conspiracy theories. However, we also found a non-neglible variability in the explained variance and predictive contributions with respect to macro-level factors such as the pandemic stage or cultural region. Overall, the results underscore the importance of morality-related and contextual factors in understanding adherence to public health recommendations during the pandemic.

3.
Front Neurol ; 12: 631722, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776890

RESUMO

Dementia is becoming increasingly prevalent in Latin America, contrasting with stable or declining rates in North America and Europe. This scenario places unprecedented clinical, social, and economic burden upon patients, families, and health systems. The challenges prove particularly pressing for conditions with highly specific diagnostic and management demands, such as frontotemporal dementia. Here we introduce a research and networking initiative designed to tackle these ensuing hurdles, the Multi-partner consortium to expand dementia research in Latin America (ReDLat). First, we present ReDLat's regional research framework, aimed at identifying the unique genetic, social, and economic factors driving the presentation of frontotemporal dementia and Alzheimer's disease in Latin America relative to the US. We describe ongoing ReDLat studies in various fields and ongoing research extensions. Then, we introduce actions coordinated by ReDLat and the Latin America and Caribbean Consortium on Dementia (LAC-CD) to develop culturally appropriate diagnostic tools, regional visibility and capacity building, diplomatic coordination in local priority areas, and a knowledge-to-action framework toward a regional action plan. Together, these research and networking initiatives will help to establish strong cross-national bonds, support the implementation of regional dementia plans, enhance health systems' infrastructure, and increase translational research collaborations across the continent.

4.
Patterns (N Y) ; 2(2): 100176, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33659906

RESUMO

The identification of human violence determinants has sparked multiple questions from different academic fields. Innovative methodological assessments of the weight and interaction of multiple determinants are still required. Here, we examine multiple features potentially associated with confessed acts of violence in ex-members of illegal armed groups in Colombia (N = 26,349) through deep learning and feature-derived machine learning. We assessed 162 social-contextual and individual mental health potential predictors of historical data regarding consequentialist, appetitive, retaliative, and reactive domains of violence. Deep learning yields high accuracy using the full set of determinants. Progressive feature elimination revealed that contextual factors were more important than individual factors. Combined social network adversities, membership identification, and normalization of violence were among the more accurate social-contextual factors. To a lesser extent the best individual factors were personality traits (borderline, paranoid, and antisocial) and psychiatric symptoms. The results provide a population-based computational classification regarding historical assessments of violence in vulnerable populations.

5.
Front Neurol ; 12: 613967, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33692740

RESUMO

Introduction: Several methods offer free volumetry services for MR data that adequately quantify volume differences in the hippocampus and its subregions. These methods are frequently used to assist in clinical diagnosis of suspected hippocampal sclerosis in temporal lobe epilepsy. A strong association between severity of histopathological anomalies and hippocampal volumes was reported using MR volumetry with a higher diagnostic yield than visual examination alone. Interpretation of volumetry results is challenging due to inherent methodological differences and to the reported variability of hippocampal volume. Furthermore, normal morphometric differences are recognized in diverse populations that may need consideration. To address this concern, we highlighted procedural discrepancies including atlas definition and computation of total intracranial volume that may impact volumetry results. We aimed to quantify diagnostic performance and to propose reference values for hippocampal volume from two well-established techniques: FreeSurfer v.06 and volBrain-HIPS. Methods: Volumetry measures were calculated using clinical T1 MRI from a local population of 61 healthy controls and 57 epilepsy patients with confirmed unilateral hippocampal sclerosis. We further validated the results by a state-of-the-art machine learning classification algorithm (Random Forest) computing accuracy and feature relevance to distinguish between patients and controls. This validation process was performed using the FreeSurfer dataset alone, considering morphometric values not only from the hippocampus but also from additional non-hippocampal brain regions that could be potentially relevant for group classification. Mean reference values and 95% confidence intervals were calculated for left and right hippocampi along with hippocampal asymmetry degree to test diagnostic accuracy. Results: Both methods showed excellent classification performance (AUC:> 0.914) with noticeable differences in absolute (cm3) and normalized volumes. Hippocampal asymmetry was the most accurate discriminator from all estimates (AUC:1~0.97). Similar results were achieved in the validation test with an automatic classifier (AUC:>0.960), disclosing hippocampal structures as the most relevant features for group differentiation among other brain regions. Conclusion: We calculated reference volumetry values from two commonly used methods to accurately identify patients with temporal epilepsy and hippocampal sclerosis. Validation with an automatic classifier confirmed the principal role of the hippocampus and its subregions for diagnosis.

6.
Alzheimers Dement (Amst) ; 11: 588-598, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31497638

RESUMO

INTRODUCTION: Timely diagnosis of behavioral variant frontotemporal dementia (bvFTD) remains challenging because it depends on clinical expertise and potentially ambiguous diagnostic guidelines. Recent recommendations highlight the role of multimodal neuroimaging and machine learning methods as complementary tools to address this problem. METHODS: We developed an automatic, cross-center, multimodal computational approach for robust classification of patients with bvFTD and healthy controls. We analyzed structural magnetic resonance imaging and resting-state functional connectivity from 44 patients with bvFTD and 60 healthy controls (across three imaging centers with different acquisition protocols) using a fully automated processing pipeline, including site normalization, native space feature extraction, and a random forest classifier. RESULTS: Our method successfully combined multimodal imaging information with high accuracy (91%), sensitivity (83.7%), and specificity (96.6%). DISCUSSION: This multimodal approach enhanced the system's performance and provided a clinically informative method for neuroimaging analysis. This underscores the relevance of combining multimodal imaging and machine learning as a gold standard for dementia diagnosis.

7.
Rev. argent. neurocir ; 33(2): 73-81, jun. 2019. ilus
Artigo em Espanhol | LILACS, BINACIS | ID: biblio-1177669

RESUMO

Introducción: La estimulación cerebral profunda es una técnica difundida y validada para eltratamiento de múltiples dolencias neurológicas y psiquiátricas, entre ellas el temblor esencial. Objetivo: Evaluar si existe un correlato clínico-anatómico, para un paciente con TE, entre la mejor estimulación lograda y los tractos involucrados. Para esto se realiza una descripción de la técnica utilizada, incluyendo el procesamiento de imágenes necesario. Material y métodos: Se presenta el caso de un paciente de 53 años de edad, con una historia de 23 años de temblor esencial progresivo e incapacitante. Se realizó un implante de DBS bilateral en Vim. Se realizó un post procesamiento de imágenes con un método desarrollado por nuestro equipo a través del cual se permitió evaluar gráficamente el área de estimulación cerebral y sus relaciones con los tractos implicados en la patología (dento-rubro-talámico, haz piramidal y haz lemniscal). Resultados: El paciente presentó una mejoría del 55% medido por escala de temblor de Tolosa. Se obtuvo una correlación anatómica y funcional de lo esperado según imágenes y la respuesta clínica del paciente. Se constataron efectos adversos cuando la estimulación implicaba fibras del haz piramidal y lemniscal, presentando los mejores efectos clínicos cuando el haz dento-rubro-talámico era influenciado por el área de acción del campo eléctrico. Conclusiones: En este reporte mostramos la aplicabilidad de DTI y tractografía para explicar los efectos de la programación de los pacientes con estimulación cerebral profunda.


Introduction: Deep brain stimulation is a widespread and validated technique for the treatment of multiple neurological and psychiatric disorders, including essential tremor. Objective: To evaluate if there is a clinical-anatomical correlate, for a patient with essential tremor, between the best stimulation achieved and the tracts involved. For this, a description of the technique used is made, including the necessary image processing. Methods: We present the case of a 53-year-old patient with a 23-year history of progressive and disabling essential tremor. A bilateral DBS implant was performed on Vim. We performed a post-processing of images with a method developed by our team through which we were able to graphically evaluate the area of brain stimulation and its relationships with the tracts involved in the pathology (dento-rubro-thalamic tract, pyramidal tract and lemniscal tract). Conclusions: In this report we showed the applicability of DTI and tractography to explain the clinical effects of the programming features in patients with deep brain stimulation.


Assuntos
Estimulação Elétrica Nervosa Transcutânea , Tremor Essencial , Imagem de Tensor de Difusão , Transtornos Mentais
8.
Hum Brain Mapp ; 40(10): 2967-2980, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30882961

RESUMO

Resting state fMRI is a tool for studying the functional organization of the human brain. Ongoing brain activity at "rest" is highly dynamic, but procedures such as correlation or independent component analysis treat functional connectivity (FC) as if, theoretically, it is stationary and therefore the fluctuations observed in FC are thought as noise. Consequently, FC is not usually used as a single-subject level marker and it is limited to group studies. Here we develop an imaging-based technique capable of reliably portraying information of local dynamics at a single-subject level by using a whole-brain model of ongoing dynamics that estimates a local parameter, which reflects if each brain region presents stable, asynchronous or transitory oscillations. Using 50 longitudinal resting-state sessions of one single subject and single resting-state sessions from a group of 50 participants we demonstrate that brain dynamics can be quantified consistently with respect to group dynamics using a scanning time of 20 min. We show that brain hubs are closer to a transition point between synchronous and asynchronous oscillatory dynamics and that dynamics in frontal areas have larger heterogeneity in its values compared to other lobules. Nevertheless, frontal regions and hubs showed higher consistency within the same subject while the inter-session variability found in primary visual and motor areas was only as high as the one found across subjects. The framework presented here can be used to study functional brain dynamics at group and, more importantly, at individual level, opening new avenues for possible clinical applications.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Modelos Neurológicos , Descanso/fisiologia , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Adulto Jovem
9.
J Neurosci Methods ; 302: 24-34, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29174020

RESUMO

BACKGROUND: We present our results in the International challenge for automated prediction of MCI from MRI data. We evaluate the performance of MRI-based neuromorphometrics features (nMF) in the classification of Healthy Controls (HC), Mild Cognitive Impairment (MCI), converters MCI (cMCI) and Alzheimer's Disease (AD) patients. NEW METHODS: We propose to segregate participants in three groups according to Mini Mental State Examination score (MMSEs), searching for the main nMF in each group. Then we use them to develop a Multi Classifier System (MCS). We compare the MCS against a single classifier scheme using both MMSEs+nMF and nMF only. We repeat this comparison using three state-of-the-art classification algorithms. RESULTS: The MCS showed the best performance on both Accuracy and Area Under the Receiver Operating Curve (AUC) in comparison with single classifiers. The multiclass AUC for the MCS classification on Test Dataset were 0.83 for HC, 0.76 for cMCI, 0.65 for MCI and 0.95 for AD. Furthermore, MCS's optimum accuracy on Neurodegenerative Disease (ND) detection (AD+cMCI vs MCI+HC) was 81.0% (AUC=0.88), while the single classifiers got 71.3% (AUC=0.86) and 63.1% (AUC=0.79) for MMSEs+nMF and only nMF respectively. COMPARISON WITH EXISTING METHOD: The proposed MCS showed a better performance than using all nMF into a single state-of-the-art classifier. CONCLUSIONS: These findings suggest that using cognitive scoring, e.g. MMSEs, in the design of a Multi Classifier System improves performance by allowing a better selection of MRI-based features.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Encéfalo/diagnóstico por imagem , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Idoso , Doença de Alzheimer/classificação , Doença de Alzheimer/psicologia , Encéfalo/patologia , Disfunção Cognitiva/classificação , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/patologia , Disfunção Cognitiva/psicologia , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Testes de Estado Mental e Demência , Reconhecimento Automatizado de Padrão , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA