Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(15): 23877-23888, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475228

RESUMO

The response of terahertz to the presence of water content makes it an ideal analytical tool for hydration monitoring in agricultural applications. This study reports on the feasibility of terahertz sensing for monitoring the hydration level of freshly harvested leaves of Celtis sinensis by employing a imaging platform based on quantum cascade lasers and laser feedback interferometry. The imaging platform produces wide angle high resolution terahertz amplitude and phase images of the leaves at high frame rates allowing monitoring of dynamic water transport and other changes across the whole leaf. The complementary information in the resulting images was fed to a machine learning model aiming to predict relative water content from a single frame. The model was used to predict the change in hydration level over time. Results of the study suggest that the technique could have substantial potential in agricultural applications.

2.
J Phys Chem Lett ; 14(20): 4892-4900, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37199508

RESUMO

Superconducting circuits are among the most advanced quantum computing technologies; however, their performance is limited by losses found in surface oxides and disordered materials. In this work, we demonstrate the identification and spatial localization of a near-field signature of loss centers on tantalum films using terahertz scattering-type scanning near-field optical microscopy. By utilizing terahertz nanospectroscopy, we observe a localized excess vibrational mode around 0.5 THz and identify this resonance as the boson peak, a signature of amorphous materials. Grazing-incidence wide-angle X-ray scattering reveals that oxides on freshly solvent-cleaned samples are amorphous, whereas crystalline phases emerge after aging in air. Through nanoscale localization of defect centers, our findings provide valuable insights for the optimization of fabrication procedures for new low-loss superconducting circuits.

3.
Biomed Opt Express ; 14(4): 1393-1410, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37078035

RESUMO

Early detection of skin pathologies with current clinical diagnostic tools is challenging, particularly when there are no visible colour changes or morphological cues present on the skin. In this study, we present a terahertz (THz) imaging technology based on a narrow band quantum cascade laser (QCL) at 2.8 THz for human skin pathology detection with diffraction limited spatial resolution. THz imaging was conducted for three different groups of unstained human skin samples (benign naevus, dysplastic naevus, and melanoma) and compared to the corresponding traditional histopathologic stained images. The minimum thickness of dehydrated human skin that can provide THz contrast was determined to be 50 µm, which is approximately one half-wavelength of the THz wave used. The THz images from different types of 50 µm-thick skin samples were well correlated with the histological findings. The per-sample locations of pathology vs healthy skin can be separated from the density distribution of the corresponding pixels in the THz amplitude-phase map. The possible THz contrast mechanisms relating to the origin of image contrast in addition to water content were analyzed from these dehydrated samples. Our findings suggest that THz imaging could provide a feasible imaging modality for skin cancer detection that is beyond the visible.

4.
ACS Nano ; 16(10): 16497-16512, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36245096

RESUMO

Biomaterial-associated infections are one of the major causes of implant failure. These infections result from persistent bacteria that have adhered to the biomaterial surface before, during, or after surgery and have formed a biofilm on the implant's surface. It is estimated that 4 to 10% of implant surfaces are contaminated with bacteria; however, the infection rate can be as high as 30% in intensive care units in developed countries and as high as 45% in developing countries. To date, there is no clinical solution to prevent implant infection without relying on the use of high doses of antibiotics supplied systemically and/or removal of the infected device. In this study, melimine, a chimeric cationic peptide that has been tested in Phase I and II human clinical trials, was immobilized onto the surface of 3D-printed medical-grade polycaprolactone (mPCL) scaffolds via covalent binding and adsorption. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) spectra of melimine-treated surfaces confirmed immobilization of the peptide, as well as its homogeneous distribution throughout the scaffold surface. Amino acid analysis showed that melimine covalent and noncovalent immobilization resulted in a peptide density of ∼156 and ∼533 ng/cm2, respectively. Furthermore, we demonstrated that the immobilization of melimine on mPCL scaffolds by 1-ethyl-3-[3-(dimethylamino)propyl] carbodiimide hydrochloride (EDC) coupling and noncovalent interactions resulted in a reduction of Staphylococcus aureus colonization by 78.7% and 76.0%, respectively, in comparison with the nonmodified control specimens. Particularly, the modified surfaces maintained their antibacterial properties for 3 days, which resulted in the inhibition of biofilm formation in vitro. This system offers a biomaterial strategy to effectively prevent biofilm-related infections on implant surfaces without relying on the use of prophylactic antibiotic treatment.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Pseudomonas aeruginosa , Humanos , Peptídeos Catiônicos Antimicrobianos/química , Biofilmes , Antibacterianos/farmacologia , Antibacterianos/química , Materiais Revestidos Biocompatíveis/química , Bactérias , Aminoácidos , Carbodi-Imidas/farmacologia , Impressão Tridimensional
5.
Environ Sci Technol ; 56(16): 11625-11634, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35913828

RESUMO

Free nitrous acid (FNA, i.e., HNO2) has been recently applied to biofilm control in wastewater management. The mechanism triggering biofilm detachment upon exposure to FNA still remains largely unknown. In this work, we aim to prove that FNA induces biofilm dispersal via extracellular polymeric matrix breakdown and cell lysis. Biofilms formed by a model organism, Pseudomonas aeruginosa PAO1, were treated with FNA at concentrations ranging from 0.2 to 15 mg N/L for 24 h (conditions typically used in applications). The biofilms and suspended biomass were monitored both before and after FNA treatment using a range of methods including optical density measurements, viability assays, confocal laser scanning microscopy, and atomic force microscopy. It was revealed that FNA treatment caused substantial and concentration-dependent biofilm detachment. The addition of a reactive nitrogen species (RNS) scavenger, that is, 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, substantially reduced biofilm dispersal, suggesting that the nitrosative decomposition species of HNO2 (i.e., RNS, e.g., •NO + •NO2) were mainly responsible for the effects. The study provides insight into and support for the use of FNA for biofilm control in wastewater treatment.


Assuntos
Ácido Nitroso , Purificação da Água , Biofilmes , Pseudomonas aeruginosa , Águas Residuárias
6.
Water Res ; 217: 118401, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35427827

RESUMO

Free nitrous acid (FNA, i.e. HNO2) has been demonstrated to have broad biocidal effects on a range of microorganisms, which has direct implications for wastewater management. However, the biocidal mechanisms still remain largely unknown. This study aims to test the hypothesis that FNA will induce cell lysis via cell membrane perforations, and consequently cause cell death via proteolysis, through the use of two model organisms namely Escherichia coli K12 and Pseudomonas putida KT2440. A combination of analytical techniques that included viability assays, atomic force microscopy (AFM), protein abundance assays and proteomic analysis using Quadruple-Orbitrap™ Mass spectrometry was used to evaluate the extent of cell death and possible cell lysis mechanisms. FNA treatment at 6.09 mg/L for 24 h (conditions typically applied in applications) induced 36 ± 4.2% and 91 ± 3.5% cell death/lysis of E. coli and P. putida, respectively. AFM showed that the lysis of cells was observed via perforations in the cell membrane; cells also appeared to shrink and become flat following FNA treatment. By introducing a reactive nitrogen species (RNS) scavenger to act as a treatment control, we further revealed that it was the nitrosative decomposition species of FNA, such as .NO that caused the cell lysis through the destruction of protein macromolecules found in the cell membrane (proteolysis). Subsequently, the RNS went on to cause the destruction of protein macromolecules within the cells. The death of these model organisms E. coli and P. putida following exposure to FNA treatment provides insights into the use of FNA as an antimicrobial agent in wastewater treatment.


Assuntos
Ácido Nitroso , Espécies Reativas de Nitrogênio , Reatores Biológicos , Morte Celular , Escherichia coli , Nitritos , Proteômica , Esgotos
7.
Nanotechnology ; 33(6)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34715680

RESUMO

Significant efforts have recently been invested in assessing the physical and chemical properties of microbial nanowires for their promising role in developing alternative renewable sources of electricity, bioelectronic materials and implantable sensors. One of their outstanding properties, the ever-desirable conductivity has been the focus of numerous studies. However, the lack of a straightforward and reliable method for measuring it seems to be responsible for the broad variability of the reported data. Routinely employed methods tend to underestimate or overestimate conductivity by several orders of magnitude. In this work, synthetic peptide nanowires conductivity is interrogated employing a non-destructive measurement technique developed on a terahertz scanning near-field microscope to test if peptide aromaticity leads to higher electrical conductivity. Our novel peptide conductivity measurement technique, based on triple standards calibration method, shows that in the case of two biopolymer mimicking peptides, the sample incorporating aromatic residues (W6) is about six times more conductive than the negative control (L6). To the best of our knowledge, this is the first report of a quantitative nano-scale terahertz s-SNOM investigation of peptides. These results prove the suitability of the terahertz radiation-based non-destructive approach in tandem with the designer peptides choice as model test subjects. This approach requires only simple sample preparation, avoids many of the pitfalls of typical contact-based conductivity measurement techniques and could help understanding fundamental aspects of nature's design of electron transfer in biopolymers.


Assuntos
Condutividade Elétrica , Nanofios/química , Peptídeos/química , Espectroscopia Terahertz , Microscopia
8.
Adv Biosyst ; 4(9): e2000074, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32803868

RESUMO

Nontoxic carbon nanoparticle samples prepared by both bottom-up and top-down approaches do not inhibit Gram-negative bacterial growth, indicating excellent biocompatibilities. However, cell growth inhibitory efficacies increase considerably when the carbon nanoparticles are conjugated with the antibiotic tetracycline. In tetracycline-resistant bacteria, these efficacies can approach tenfold higher activities when compared to tetracycline alone. No structural abnormality such as membrane disruptions is evident in the tested bacterial strains; this is in contrast with other nanocarbon systems such as graphene oxides, carbon nanotubes, and amine-functionalized carbon nanoparticles which do exhibit membrane disruptions. In comparison, the tetracycline-conjugated carbon nanoparticles induce membrane perturbations (but not membrane disruptions), inhibiting bacterial efflux mechanisms. It is proposed that when tetracycline is conjugated to the surface of carbon nanoparticles, it functions to direct the nanoparticles to membrane-associated tetracycline efflux pumps, thereby blocking and subsequently inhibiting their function. The conjugation between biocompatible carbon nanoparticles and subtherapeutic but well-established antibiotic molecules may provide hybrid antibiotic assembly strategies resulting in effective multidrug efflux inhibition for combating antibiotic resistance.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Nanotubos de Carbono/química , Tetraciclina , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Bactérias Gram-Negativas/citologia , Bactérias Gram-Negativas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Tetraciclina/química , Tetraciclina/farmacologia
9.
Water Res ; 184: 116179, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32688148

RESUMO

Recent studies demonstrated the practical potential of multiple beneficial reuse of ferric-rich drinking water sludge (ferric DWS) for sulfide and phosphate removal in wastewater applications. In practice, ferric DWS is often stored on-site for periods ranging from days to several weeks (or even months), which may affect its reuse potential through changes in iron speciation and morphology. In this study, we investigated for the first time the impact of ferric DWS 'aging' time on the iron speciation and morphology and its subsequent impact on its reactivity and overall sulfide and phosphate removal capacity. A series of coagulation tests were conducted to generate ferric DWS of a practically relevant composition by using raw influent water from a full-scale drinking water treatment plant (DWTP). A comparison with ferric DWS from 8 full-scale DWTPs confirmed the similitude. The presence of akaganeite (ß-FeOOH) was detected in ferric DWS (through XRD analyses), independent of the DWS storage time. However, the morphology of akaganeite changed over time from a predominant poorly-crystalline phase in 'fresh' DWS (8 ± 0.1% of total Fe) to a highly crystalline phase (76 ± 3% of total Fe) at a sludge aging time of 30 days which was confirmed by means of Rietveld refinement in XRD analyses (n = 3). Subsequent batch tests showed that its sulfide removal capacity decreased significantly from 1.30 ± 0.02 mmol S/mmol Fe (day 1) to 0.60 ± 0.01 (day 30), a decrease of 54 % (p < 0.05). The level of crystallinity however had no impact on sulfide removal kinetics, most sulfide being removed within 10 minutes. Upon aeration of sulfide-loaded ferric DWS in activate sludge, amorphous iron oxides species were formed independent of the initial DWS crystallinity which resulted in efficient P removal at capacities similar to that of conventional FeCl3 dosing.


Assuntos
Água Potável , Esgotos , Compostos Férricos , Ferro , Fosfatos , Sulfetos , Eliminação de Resíduos Líquidos , Águas Residuárias
10.
MethodsX ; 7: 100830, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32154127

RESUMO

Monitoring the loss of integrity in reverse osmosis (RO) membranes is crucial for protection of public health as small imperfections can result in catastrophic pathogen outbreaks. However, understanding the phenomena accompanying the loss of integrity in RO membranes relies on properly characterizing and interpreting performance data. Reproducing chemical and mechanical damage in model membranes that mimic the conditions of real-time operation is difficult. Mechanical impairment is particularly challenging, since one needs to damage selectively and in a controlled manner (producing holes of desired size) the barrier (polyamide) and/or the support layer (polyether sulfone and polyester). In this work we develop a straightforward approach to produce arrays of micro-holes in a commercially available RO membrane employing nanosecond pulsed laser ablation. The new approach is used to prepare four samples with different number of holes with constant diameter and increasing hole depth. These samples were further tested to reveal the impairment impact on filtration performance. It was observed that the flux was linked with the laser pulse density/penetration.•Uniform radius defects were created in RO membranes.•Higher pulse density leads to deeper defects.•Ablation of all three layers can be attained.

11.
Water Res ; 174: 115627, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32101785

RESUMO

Iron-based coagulants are dosed in enormous amounts and play an essential role in various segments of our urban water infrastructure. In order for the water industry to become circular, a closed-loop management strategy for iron needs to be developed. In this study, we have demonstrated for the first time that in-sewer dosed iron, either in the form of FeCl3 or ferric-based drinking water sludge (Fe-DWS) as a means to combat sewer corrosion and odour, can be recovered in the form of vivianite in digested sludge in down-stream wastewater treatment plants. Importantly, about 92 ± 2% of the in-sewer dosed Fe was estimated to be bound in vivianite in digested sludge. A simple insertion of Neodymium magnet allowed to recover 11 ± 0.2% and 15.3 ± 0.08% of the vivianite formed in the digested sludge of the in-sewer dosed iron in the form of FeCl3 and Fe-DWS, respectively. The purity of recovered vivianite ranged between 70 ± 5% and 49 ± 3% for in-sewer dosed FeCl3 and Fe-DWS, respectively. Almost complete (i.e. 98 ± 0.3%) separation of Fe in the form of ferrihydrite was achieved from vivianite after alkaline washing. Subsequent batch experiments demonstrated that the recovered ferrihydrite can be directly reused for efficient sulfide control in sewers. At a ferrihydrite-Fe:S molar ratio of 1.2:1, sewage dissolved sulfide concentrations was reduced from 15 mgS/L to below 0.5 mgS/L within 1 h of reaction. Overall, the results obtained in our study flag a first step for utilities towards a closed-loop iron-based coagulant management approach.


Assuntos
Ferro , Esgotos , Sulfetos , Eliminação de Resíduos Líquidos , Águas Residuárias
12.
Water Res ; 168: 115135, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31622911

RESUMO

Silica fouling during groundwater reverse osmosis (RO) treatment can have a significant impact on filtration performance. To better understand this phenomenon, the equilibrium kinetics of amorphous colloidal silica were studied at conditions relevant to RO of silica-rich alkaline groundwater. The impact of particle size was investigated using synthetic monodisperse silica nanoparticles. Bench scale experiments were conducted by monitoring dissolved silica concentration of aqueous suspensions of colloids of 100 and 300 nm diameter and pH 8.5 to 9.5. The equilibrium data was determined from existing established rate law equations. This study concluded that surface energy has a major impact on silica dissolution rate constant, particularly for colloidal silica. Observations of Ostwald ripening in bidisperse silica dispersions further confirmed these results, which indicate that dissolution and redeposition is responsible for the problematic silica fouling behaviour during RO treatment. 2D modelling based on inferred equilibrium data allows visualization of scale layer growth in agreement with cross-sectional scanning electron micrographs of autopsied membranes.


Assuntos
Água Subterrânea , Purificação da Água , Coloides , Estudos Transversais , Membranas Artificiais , Osmose , Rádio (Anatomia) , Dióxido de Silício , Solubilidade
13.
Water Res ; 167: 115032, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31546029

RESUMO

Hydrogen sulfide induced corrosion of concrete sewer pipes is a major issue for wastewater utilities globally. One of the most commonly used methods to combat hydrogen sulfide is the addition of ferric chloride. While a reliable and effective method, ferric chloride is acidic causing OH&S concerns as well as alkalinity consumption in sewage. This study investigates, under full-scale field conditions, an alternative method for sulfide control by in-situ electrochemical generation of iron ions using sacrificial iron electrodes. This method concomitantly produces alkalinity through cathodic OH- generation, rather than consumption. The gaseous hydrogen sulfide concentrations at the discharge wet well of a real-life rising main (length: ∼1 km in, diameter: 150 mm) decreased from 173 ppm to 43 ppm (90 percentile of peak values), when a current of 0.86 A/m3 of sewage was applied. The 90 percentile peak H2S value was further reduced to 6.6 ppm when the applied current was increased to 1.14 A/m3 sewage. Moreover, methane generation was almost completely inhibited from 25.3 ±â€¯1.46 mg COD/L to 0.06 ±â€¯0.04 mg COD/L. The overall cell voltage remained constant throughout the experimental period clearly showing the stability of the process. Detailed characterization of the down-stream sewer pipe biofilm revealed the complexity of the iron chemistry as the in-situ produced iron ions undergo transformation into a variety of iron species. Overall, this study demonstrates that in-situ generation of iron and alkalinity is an effective alternative method for hydrogen sulfide control in sewers.


Assuntos
Sulfeto de Hidrogênio , Ferro , Esgotos , Sulfetos , Águas Residuárias
14.
Water Res ; 165: 114996, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31465996

RESUMO

Iron and aluminium based coagulants are used in enormous amounts and play an essential role in urban water management globally. They are dosed at drinking water production facilities for the removal of natural organic matter. Iron salts are also dosed to sewers for corrosion and odour control, and at wastewater treatment plants (WWTPs) for phosphate removal from wastewater and hydrogen sulfide removal from biogas. A recent laboratory study revealed that iron dosed to sewers is available for phosphate and hydrogen sulfide removal in the downstream WWTP. This study demonstrates for the first time under real-life conditions the practical feasibility and effectiveness of the strategy through a year-long full-scale investigation. Over a period of 5 months, alum dosing at ∼190 kg Al/day to the bioreactor in a full-scale WWTP was stopped, while FeCl2 dosing at ∼160 kg Fe/day in the upstream network was commenced. Extensive sampling campaigns were conducted over the baseline, trial and recovery periods to investigate sulfide control in sewers and its flow-on effects on phosphate in WWTP effluent, H2S in biogas, as well as on the WWTP effluent hypochlorite disinfection process. A plant-wide mass balance analysis showed that the Fe2+ dosed upstream was effectively used for P removal in the activated sludge tanks, with an effluent phosphate concentration comparable to that in the baseline period (i.e. with alum dosing to the bioreactor). Simultaneously, hydrogen sulfide concentration in biogas decreased ∼43%, from 495 ±â€¯10 to 283 ±â€¯4 ppm. No effects on biological nitrogen removal and disinfection processes were observed. Both effluent phosphate and H2S in biogas increased in the recovery period, when in-sewer dosing of FeCl2 was stopped. X-ray diffraction failed to reveal the presence of vivianite in the digested sludge, providing strong evidence that thermal hydrolysis prevented the formation of vivianite during anaerobic digestion. The latter limits the potential for selective recovery of Fe and P through magnetic separation. Overall, our study clearly demonstrates the multiple beneficial reuse of iron in a real urban wastewater system and urges water utilities to adopt an integrated approach to coagulant use in urban water management.


Assuntos
Esgotos , Água , Reatores Biológicos , Sulfetos , Eliminação de Resíduos Líquidos , Águas Residuárias
15.
J Agric Food Chem ; 67(9): 2449-2458, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30724561

RESUMO

Dicyandiamide (DCD) has been studied as a stabilizer for nitrogen fertilizers for over 50 years. Its efficacy is limited at elevated temperatures, but this could be addressed by encapsulation to delay exposure. Here, poly(3-hydroxybutyrate- co-3-hydroxyvalerate) (PHBV) was investigated as a biodegradable matrix for the encapsulation of DCD. Cylindrical ∼3 mm × 3 mm pellets were fabricated through extrusion processing with 23 wt % DCD. Release kinetics were monitored in water, sand, and both active and γ-irradiated agricultural clay loam soils. Raman maps showed a wide particle size distribution of DCD crystals and indicated that Hitachi's classic moving front theory did not hold for this formulation. The inhibitor release kinetics were mediated by four distinct mechanisms: (i) initial rapid dissolution of surface DCD, (ii) channeling of water through voids and pores in the PHBV matrix, (iii) gradual diffusion of water and DCD through layers of PHBV, and (iv) biodegradation of the PHBV matrix. After ∼6 months, 45-100% release occurred, depending on the release media. PHBV is shown to be an effective, biodegradable matrix for the long-term slow release of nitrification inhibitors.


Assuntos
Agroquímicos/química , Guanidinas/química , Nitrificação/efeitos dos fármacos , Poliésteres/química , Agricultura , Biodegradação Ambiental , Cápsulas , Preparações de Ação Retardada , Estabilidade de Medicamentos , Fertilizantes/análise , Guanidinas/administração & dosagem , Cinética , Tamanho da Partícula , Solo/química
16.
Environ Sci Technol ; 51(21): 12229-12234, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29020773

RESUMO

Recently, naturally occurring magnetite (Fe3O4) has emerged as a new material for sulfide control in sewers. However, unrefined magnetite could have high heavy metal contents (e.g., Cr, Zn, Ni, Sn, etc.) and the capacity to remove dissolved sulfide is reasonably limited due to relatively large particle sizes. To overcome the drawbacks of unrefined magnetite we used an electrochemical system with mild steel as sacrificial electrodes to in-situ generate high strength solutions of plate-like magnetite nanoparticles (MNP). MNP with a size range between 120 and 160 nm were electrochemically generated at 9.35 ± 0.28 g Fe3O4-Fe/L, resulting in a Coulombic efficiency (CE) for iron oxidation of 93.5 ± 2.8%. The produced MNP were found to effectively reduce sulfide levels in sewage from 12.7 ± 0.3 to 0.2 ± 0.0 mg S/L at a sulfide-to-MNP ratio of 0.26 g S/g Fe3O4-Fe. Subsequently, MNP were continuously generated with polarity switching at stable cell voltage for 31 days at 4.53 ± 0.35 g Fe3O4-Fe/L with a CE for iron oxidation of 92.4 ± 7.2%. The continuously produced MNP reduced sulfide at similar levels to around 0.2 mg S/L at a ratio of 0.28 g S/g Fe3O4-Fe.


Assuntos
Nanopartículas de Magnetita , Esgotos , Sulfetos , Óxido Ferroso-Férrico , Ferro
17.
Sci Rep ; 6: 37389, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27869215

RESUMO

Bacterial species in the plant-beneficial-environmental clade of Burkholderia represent a substantial component of rhizosphere microbes in many plant species. To better understand the molecular mechanisms of the interaction, we combined functional studies with high-resolution dual transcriptome analysis of sugarcane and root-associated diazotrophic Burkholderia strain Q208. We show that Burkholderia Q208 forms a biofilm at the root surface and suppresses the virulence factors that typically trigger immune response in plants. Up-regulation of bd-type cytochromes in Burkholderia Q208 suggests an increased energy production and creates the microaerobic conditions suitable for BNF. In this environment, a series of metabolic pathways are activated in Burkholderia Q208 implicated in oxalotrophy, microaerobic respiration, and formation of PHB granules, enabling energy production under microaerobic conditions. In the plant, genes involved in hypoxia survival are up-regulated and through increased ethylene production, larger aerenchyma is produced in roots which in turn facilitates diffusion of oxygen within the cortex. The detected changes in gene expression, physiology and morphology in the partnership are evidence of a sophisticated interplay between sugarcane and a plant-growth promoting Burkholderia species that advance our understanding of the mutually beneficial processes occurring in the rhizosphere.


Assuntos
Burkholderia/fisiologia , Saccharum/crescimento & desenvolvimento , Saccharum/microbiologia , Anaerobiose , Biofilmes/crescimento & desenvolvimento , Burkholderia/genética , Burkholderia/ultraestrutura , Carbono/metabolismo , Citocromos/metabolismo , Regulação para Baixo/genética , Flagelos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes Bacterianos , Genes de Plantas , Lipopolissacarídeos/biossíntese , Redes e Vias Metabólicas/genética , Fotossíntese , Raízes de Plantas/microbiologia , Raízes de Plantas/ultraestrutura , Saccharum/ultraestrutura , Análise de Sequência de RNA , Regulação para Cima/genética
18.
Water Res ; 90: 167-175, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26724450

RESUMO

Membrane ageing reduces the quality of the filtered water. Therefore, in order to warrant public health, monitoring membrane performances are of utmost importance. Reverse osmosis (RO) membranes are generally used to remove viruses and salt. However, there is no detailed study demonstrating the impact of aged membrane on the rejection of viruses and of membrane integrity indicators. In this paper, the impact of hypochlorite induced RO ageing on the rejection of a virus surrogate (MS2 phage) and four membrane integrity indicators (salt, dissolved organic matter, rhodamine WT and sulphate) was evaluated. Hypochlorite exposure was either active (under filtration) or passive (soaking), and the changes of the membrane surface chemistry were characterised using several autopsy techniques. Under this accelerated ageing condition, the introduction of chlorine in the membrane chemistry and the breakage of amide bonds caused an increase of the water permeability and a decrease of the virus surrogate's and indicators' rejection. Ageing resulted in a more negatively charged membrane and also in a higher hydrophobicity, which lead to the adsorption of MS2 phage. Despite severe physical membrane damage leading to a reduction of salt rejection to 1.2 log (94%), the minimum rejection of MS2 phage stayed on or above 4 log.


Assuntos
Levivirus/isolamento & purificação , Membranas Artificiais , Purificação da Água/métodos , Cloro , Filtração/métodos , Interações Hidrofóbicas e Hidrofílicas , Ácido Hipocloroso/química , Osmose , Permeabilidade
19.
Bioelectrochemistry ; 102: 56-63, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25497168

RESUMO

It is still unclear whether autotrophic microbial biocathode biofilms are able to self-regenerate under purely cathodic conditions without any external electron or organic carbon sources. Here we report on the successful development and long-term operation of an autotrophic biocathode whereby an electroactive biofilm was able to grow and sustain itself with CO2 as a sole carbon source and using the cathode as electron source, with H2 as sole product. From a small inoculum of 15 mg COD (in 250 mL), containing 30.3% Archaea, the bioelectrochemical system operating at -0.5 V vs. SHE enabled an estimated biofilm growth of 300 mg as COD over a period of 276 days. A dramatic change in the microbial population was observed during this period with Archaea disappearing completely (<0.1% of population). The predominant phyla enriched were Proteobacteria (57.3%), Firmicutes (12.4%), Bacteroidetes (11.6%) and Actinobacteria (1.1%). Up to 9.2 L H2 m(-2) day(-1) (1.88 A m(-2)) was achieved when the cathode potential was decreased to -0.75 V vs. SHE. This study demonstrates that purely autotrophic biofilm growth coupled to proton reduction to hydrogen alone can be sustained with a cathode as the sole electron source, while avoiding the development of H2-consuming microorganisms such as methanogens and acetogens.


Assuntos
Processos Autotróficos , Bactérias/metabolismo , Fontes de Energia Bioelétrica/microbiologia , Biofilmes/crescimento & desenvolvimento , Hidrogênio/metabolismo , Bactérias/citologia , Dióxido de Carbono/metabolismo , Sobrevivência Celular , Eletroquímica , Eletrodos , Transporte de Elétrons , Nitrogênio/metabolismo , Plâncton/citologia , Plâncton/metabolismo
20.
Environ Sci Technol ; 48(12): 7151-6, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24911921

RESUMO

Stainless steel (SS) can be an attractive material to create large electrodes for microbial bioelectrochemical systems (BESs), due to its low cost and high conductivity. However, poor biocompatibility limits its successful application today. Here we report a simple and effective method to make SS electrodes biocompatible by means of flame oxidation. Physicochemical characterization of electrode surface indicated that iron oxide nanoparticles (IONPs) were generated in situ on an SS felt surface by flame oxidation. IONPs-coating dramatically enhanced the biocompatibility of SS felt and consequently resulted in a robust electroactive biofilm formation at its surface in BESs. The maximum current densities reached at IONPs-coated SS felt electrodes were 16.5 times and 4.8 times higher than the untreated SS felts and carbon felts, respectively. Furthermore, the maximum current density achieved with the IONPs-coated SS felt (1.92 mA/cm(2), 27.42 mA/cm(3)) is one of the highest current densities reported thus far. These results demonstrate for the first time that flame oxidized SS felts could be a good alternative to carbon-based electrodes for achieving high current densities in BESs. Most importantly, high conductivity, excellent mechanical strength, strong chemical stability, large specific surface area, and comparatively low cost of flame oxidized SS felts offer exciting opportunities for scaling-up of the anodes for BESs.


Assuntos
Fontes de Energia Bioelétrica , Biofilmes/crescimento & desenvolvimento , Carbono/química , Eletricidade , Técnicas Eletroquímicas/métodos , Aço Inoxidável/química , Reatores Biológicos , Fibra de Carbono , Catálise , Eletrodos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Oxirredução , Espectroscopia Fotoeletrônica , Análise Espectral Raman , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA