Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 31(1): 279-295, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34643310

RESUMO

Recently diverged or diverging populations can offer unobstructed insights into early barriers to gene flow during the initial stages of speciation. The current study utilised a novel insect system (order Mantophasmatodea) to shed light on the early drivers of speciation. The members of this group have limited dispersal abilities, small allopatric distributions and strong habitat associations in the Cape Floristic Region biodiversity hotspot in South Africa. Sister taxa from the diverse family Austrophasmatidae were chosen as focal species (Karoophasma biedouwense, K. botterkloofense). Population genetics and Generalized Dissimilarity Modelling (GDM) were used to characterise spatial patterns of genetic variation and evaluate the contribution of environmental factors to population divergence and speciation. Extensive sampling confirmed the suspected allopatry of these taxa. However, hybrids were identified in a narrow region occurring between the species' distributions. Strong population structure was found over short geographic distances; particularly in K. biedouwense in which geographic distance accounted for 32% of genetic variation over a scale of 50 km (r = .56, p < .001). GDM explained 42%-78% of the deviance in observed genetic dissimilarities. Geographic distance was consistently indicated to be important for between species and within population differentiation, suggesting that limited dispersal ability may be an important neutral driver of divergence. Temperature, altitude, precipitation and vegetation were also indicated as important factors, suggesting the possible role of adaptation to local environmental conditions for species divergence. The discovery of the hybrid-zone, and the multiple allopatric species pairs in Austrophasmatidae support the idea that this could be a promising group to further our understanding of speciation modes.


Assuntos
Biodiversidade , Ecossistema , Fluxo Gênico , Especiação Genética , Genética Populacional , Filogenia
2.
Conserv Physiol ; 8(1): coaa083, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33173584

RESUMO

To increase the applicability and success of physiological approaches in conservation plans, conservation physiology should be based on ecologically relevant relationships between physiological markers and environmental variation that can only be obtained from wild populations. Given their integrative and multifaceted aspects, markers of oxidative status have recently been considered in conservation physiology, but still need to be validated across environmental conditions and locations. Here, we examined whether inter-annual variation in two oxidative markers, plasma antioxidant capacity and plasma hydroperoxides, followed inter-annual variation in temperature anomalies and associated vegetation changes in four colonies of long-lived greater mouse-eared bats (Myotis myotis) monitored over five consecutive years. We found that the plasma antioxidant capacity of bats decreased while plasma hydroperoxide concentrations increased with increasing temperature anomalies occurring in the two weeks before blood sampling. Moreover, the antioxidant defences of these bats reflected vegetation indices, which themselves reflected the thermal conditions experienced by bats in their foraging habitat. Variation in oxidative markers therefore appears to be due to variation in thermoregulatory costs and to indirect changes in foraging costs. Overall, these results validate the use of markers of oxidative status in conservation physiology to monitor thermal perturbations recently experienced by animals in their natural habitat. However, even though oxidative markers varied in the same direction in all four bat colonies across years, the amplitude of their response differed. If these different physiological responses reflect different performances (e.g. productivity, survival rate) between colonies, this implies that, if necessary, conservation measures may need to be applied at the local scale.

3.
Biol Lett ; 16(6): 20200177, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32544381

RESUMO

Emerging infectious diseases rank among the most important threats to human and wildlife health. A comprehensive understanding of the mode of infection and presence of potential reservoirs is critical for the development of effective counter strategies. Fungal pathogens can remain viable in environmental reservoirs for extended periods of time before infecting susceptible individuals. This may be the case for Pseudogymnoascus destructans (Pd), the causative agent of bat white-nose disease. Owing to its cold-loving nature, this fungal pathogen only grows on bats during hibernation, when their body temperature is reduced. Bats only spend part of their life cycle in hibernation and do not typically show signs of infection in summer, raising the question of whether Pd remains viable in hibernacula during this period (roughly six months). If so, this could facilitate the re-infection of bats when they return to the sites the following winter. In a laboratory experiment, we determined the germination rate of Pd spores kept under constant conditions on a wall-like substrate, over the course of two years. Results showed that the seasonal pattern in Pd germination mirrored the life cycle of the bats, with an increased germination rate at times when hibernating bats would naturally be present and lower germination rates during their absence. We suggest that Pd is dependent on the presence of hibernating bats and has therefore coupled its germination rate to host availability. Furthermore, we demonstrate that Pd spores survive extended periods of host absence and can remain viable for at least two years. There is, however, a strong decrease in spore viability between the first and second years (98%). Pd viability for at least two years on a solid mineral-based substrate establishes the potential for environmental reservoirs in hibernacula walls and has strong implications for the efficacy of certain management strategies (e.g. bat culling).


Assuntos
Ascomicetos , Quirópteros , Hibernação , Micoses , Animais , Humanos , Micoses/veterinária , Estações do Ano
4.
J Hered ; 109(4): 477-483, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29206981

RESUMO

The recently discovered insect order Mantophasmatodea currently comprises 19 Southern African species. These mainly occur in allopatry, have high levels of color polymorphism and communicate via species- and gender-specific vibratory signals. High levels of interspecific morphological conservatism mean that cryptic species are likely to be uncovered. These aspects of Mantophasmatodean biology make them an ideal group in which to investigate population divergence due to habitat-specific adaptation, sexual selection, and potentially sensory speciation. Lack of appropriate genetic markers has thus far rendered such studies unfeasible. To address this need, the first microsatellite loci for this order were developed. Fifty polymorphic loci were designed specifically for Karoophasma biedouwense (Austrophasmatidae), out of which 23 were labeled and tested for amplification across the order using 2-3 individuals from 10 species, representing all 4 currently known families. A Bayesian mitochondrially encoded cytochrome c oxidase I (COI) topology was reconstructed and divergence dates within the order were estimated for the first time. Amplification success and levels of polymorphism were compared with genetic divergence and time since divergence. In agreement with studies on vertebrate taxa, both amplification and variability were negatively correlated with distance (temporal and genetic). The high number of informative loci will offer sufficient resolution for both broad level population genetic analysis and individual based pedigree or parentage analyses for most species in Austrophasmatidae, with at least some loci available for the other families. This resource will facilitate research into the evolutionary biology of this understudied but fascinating group.


Assuntos
Genética Populacional , Repetições de Microssatélites/genética , Polimorfismo Genético/genética , Pterigotos/genética , Animais , Teorema de Bayes , Ecossistema , Feminino , Deriva Genética , Marcadores Genéticos/genética , Masculino , Linhagem
5.
J Gen Virol ; 98(11): 2771-2785, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28984241

RESUMO

Polyomaviruses (PyVs) are considered to be highly host-specific in different mammalian species, with no well-supported evidence for host-switching events. We examined the species diversity and host specificity of PyVs in horseshoe bats (Rhinolophus spp.), a broadly distributed and highly speciose mammalian genus. We annotated six PyV genomes, comprising four new PyV species, based on pairwise identity within the large T antigen (LTAg) coding region. Phylogenetic comparisons revealed two instances of highly related PyV species, one in each of the Alphapolyomavirus and Betapolyomavirus genera, present in different horseshoe bat host species (Rhinolophus blasii and R. simulator), suggestive of short-range host-switching events. The two pairs of Rhinolophus PyVs in different horseshoe bat host species were 99.9 and 88.8 % identical with each other over their respective LTAg coding sequences and thus constitute the same virus species. To corroborate the species identification of the bat hosts, we analysed mitochondrial cytb and a large nuclear intron dataset derived from six independent and neutrally evolving loci for bat taxa of interest. Bayesian estimates of the ages of the most recent common ancestors suggested that the near-identical and more distantly related PyV species diverged approximately 9.1E4 (5E3-2.8E5) and 9.9E6 (4E6-18E6) years before the present, respectively, in contrast to the divergence times of the bat host species: 12.4E6 (10.4E6-15.4E6). Our findings provide evidence that short-range host-switching of PyVs is possible in horseshoe bats, suggesting that PyV transmission between closely related mammalian species can occur.


Assuntos
Quirópteros , Variação Genética , Especificidade de Hospedeiro , Infecções por Polyomavirus/veterinária , Polyomavirus/classificação , Polyomavirus/isolamento & purificação , Infecções Tumorais por Vírus/veterinária , África , Animais , Antígenos Virais de Tumores/genética , Evolução Molecular , Filogenia , Polyomavirus/fisiologia , Infecções por Polyomavirus/virologia , Análise de Sequência de DNA , Homologia de Sequência , Infecções Tumorais por Vírus/virologia
6.
Mol Phylogenet Evol ; 97: 196-212, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26826601

RESUMO

Despite many studies illustrating the perils of utilising mitochondrial DNA in phylogenetic studies, it remains one of the most widely used genetic markers for this purpose. Over the last decade, nuclear introns have been proposed as alternative markers for phylogenetic reconstruction. However, the resolution capabilities of mtDNA and nuclear introns have rarely been quantified and compared. In the current study we generated a novel ∼5kb dataset comprising six nuclear introns and a mtDNA fragment. We assessed the relative resolution capabilities of the six intronic fragments with respect to each other, when used in various combinations together, and when compared to the traditionally used mtDNA. We focused on a major clade in the horseshoe bat family (Afro-Palaearctic clade; Rhinolophidae) as our case study. This old, widely distributed and speciose group contains a high level of conserved morphology. This morphological stasis renders the reconstruction of the phylogeny of this group with traditional morphological characters complex. We sampled multiple individuals per species to represent their geographic distributions as best as possible (122 individuals, 24 species, 68 localities). We reconstructed the species phylogeny using several complementary methods (partitioned Maximum Likelihood and Bayesian and Bayesian multispecies-coalescent) and made inferences based on consensus across these methods. We computed pairwise comparisons based on Robinson-Foulds tree distance metric between all Bayesian topologies generated (27,000) for every gene(s) and visualised the tree space using multidimensional scaling (MDS) plots. Using our supported species phylogeny we estimated the ancestral state of key traits of interest within this group, e.g. echolocation peak frequency which has been implicated in speciation. Our results revealed many potential cryptic species within this group, even in taxa where this was not suspected a priori and also found evidence for mtDNA introgression. We demonstrated that by using just two introns one can recover a better supported species tree than when using the mtDNA alone, despite the shorter overall length of the combined introns. Additionally, when combining any single intron with mtDNA, we showed that the result is highly similar to the mtDNA gene tree and far from the true species tree and therefore this approach should be avoided. We caution against the indiscriminate use of mtDNA in phylogenetic studies and advocate for pilot studies to select nuclear introns. The selection of marker type and number is a crucial step that is best based on critical examination of preliminary or previously published data. Based on our findings and previous publications, we recommend the following markers to recover phylogenetic relationships between recently diverged taxa (<20 My) in bats and other mammals: ACOX2, COPS7A, BGN, ROGDI and STAT5A.


Assuntos
Núcleo Celular/genética , Quirópteros/classificação , Quirópteros/genética , DNA Mitocondrial/genética , Íntrons/genética , Filogenia , Animais , Teorema de Bayes , Ecolocação , Feminino , Funções Verossimilhança , Masculino , Filogeografia , Especificidade da Espécie
7.
Mol Ecol ; 22(15): 4055-70, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23889545

RESUMO

The demographic history of Rhinolophus hipposideros (lesser horseshoe bat) was reconstructed across its European, North African and Middle-Eastern distribution prior to, during and following the most recent glaciations by generating and analysing a multimarker data set. This data set consisted of an X-linked nuclear intron (Bgn; 543 bp), mitochondrial DNA (cytb-tRNA-control region; 1630 bp) and eight variable microsatellite loci for up to 373 individuals from 86 localities. Using this data set of diverse markers, it was possible to determine the species' demography at three temporal stages. Nuclear intron data revealed early colonization into Europe from the east, which pre-dates the Quaternary glaciations. The mtDNA data supported multiple glacial refugia across the Mediterranean, the largest of which were found in the Ibero-Maghreb region and an eastern location (Anatolia/Middle East)-that were used by R. hipposideros during the most recent glacial cycles. Finally, microsatellites provided the most recent information on these species' movements since the Last Glacial Maximum and suggested that lineages that had diverged into glacial refugia, such as in the Ibero-Maghreb region, have remained isolated. These findings should be used to inform future conservation management strategies for R. hipposideros and show the power of using a multimarker data set for phylogeographic studies.


Assuntos
Quirópteros/genética , DNA Mitocondrial/genética , Repetições de Microssatélites/genética , Animais , Sequência de Bases , Biglicano/genética , Citocromos b/genética , Europa (Continente) , Evolução Molecular , Frequência do Gene , Marcadores Genéticos/genética , Variação Genética , Haplótipos/genética , Filogeografia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA