Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2400622, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820600

RESUMO

Virion-mediated outbreaks are imminent and despite rapid responses, continue to cause adverse symptoms and death. Therefore, tunable, sensitive, high-throughput assays are needed to help diagnose future virion-mediated outbreaks. Herein, it is developed a tunable in situ assay to selectively enrich virions and extracellular vesicles (EVs) and simultaneously detect antigens and nucleic acids at a single-particle resolution. The Biochip Antigen and RNA Assay (BARA) enhanced sensitivities compared to quantitative reverse-transcription polymerase chain reaction (qRT-PCR), enabling the detection of virions in asymptomatic patients, genetic mutations in single virions, and enabling the continued long-term expression of viral RNA in the EV-enriched subpopulation in the plasma of patients with post-acute sequelae of the coronavirus disease of 2019 (COVID-19). BARA revealed highly accurate diagnoses of COVID-19 by simultaneously detecting the spike glycoprotein and nucleocapsid-encoding RNA in saliva and nasopharyngeal swab samples. Altogether, the single-particle detection of antigens and viral RNA provides a tunable framework for the diagnosis, monitoring, and mutation screening of current and future outbreaks.

2.
bioRxiv ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38712200

RESUMO

The role of extracellular vesicles (EVs) in human health and disease has garnered considerable attention over the past two decades. However, while several types of EVs are known to interact dynamically with the extracellular matrix and there is great potential value in producing high-fidelity EV micropatterns, there are currently no label-free, high-resolution, and tunable platform technologies with this capability. We introduce Light-induced Extracellular Vesicle Adsorption (LEVA) as a powerful solution to rapidly advance the study of matrix- and surface-bound EVs and other particles. The versatility of LEVA is demonstrated using commercial GFP-EV standards, EVs from glioblastoma bioreactors, and E. coli outer membrane vesicles (OMVs), with the resulting patterns used for single EV characterization, single cell migration on migrasome-mimetic trails, and OMV-mediated neutrophil swarming. LEVA will enable rapid advancements in the study of matrix- and surface-bound EVs and other particles, and should encourage researchers from many disciplines to create novel diagnostic, biomimetic, immunoengineering, and therapeutic screening assays.

3.
bioRxiv ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38464234

RESUMO

Optical and non-optical techniques propelled the field of single extracellular particle (EP) research through phenotypic and morphological analyses, revealing the similarities, differences, and co-isolation of EP subpopulations. Overcoming the challenges of optical and non-optical techniques motivates the use of orthogonal techniques while analyzing extracellular particles (EPs), which require varying concentrations and preparations. Herein, we introduce the nano-positioning matrix (NPMx) technique capable of superimposing optical and non-optical modalities for a single-EP orthogonal analysis. The NPMx technique is realized by ultraviolet-mediated micropatterning to reduce the stochasticity of Brownian motion. While providing a systematic orthogonal measurement of a single EP via total internal reflection fluorescence microscopy and transmission electron microscopy, the NPMx technique is compatible with low-yield samples and can be utilized for non-biased electrostatic capture and enhanced positive immunogold sorting. The success of the NPMx technique thus provides a novel platform by marrying already trusted optical and non-optical techniques at a single-EP resolution.

4.
iScience ; 27(1): 108656, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38205244

RESUMO

Neutrophil swarming is an essential process of the neutrophil response to many pathological conditions. Resultant neutrophil accumulations are hallmarks of acute tissue inflammation and infection, but little is known about their dynamic regulation. Technical limitations to spatiotemporally resolve individual cells in dense neutrophil clusters and manipulate these clusters in situ have hampered recent progress. We here adapted an in vitro swarming-on-a-chip platform for the use with confocal laser-scanning microscopy to unravel the complexity of single-cell responses during neutrophil crowding. Confocal sectioning allowed the live visualization of subcellular components, including mitochondria, cell membranes, cortical actin, and phagocytic cups, inside neutrophil clusters. Based on this experimental setup, we identify that chemical inhibition of the Arp2/3 complex causes cell death in crowding neutrophils. By visualizing spatiotemporal patterns of reactive oxygen species (ROS) production in developing neutrophil swarms, we further demonstrate a regulatory role of the metabolic pentose phosphate pathway for ROS production and neutrophil cluster growth.

5.
J Extracell Vesicles ; 12(11): e12369, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37908159

RESUMO

The molecular heterogeneity of extracellular vesicles (EVs) and the co-isolation of physically similar particles, such as lipoproteins (LPs), confounds and limits the sensitivity of EV bulk biomarker characterization. Herein, we present a single-EV and particle (siEVP) protein and RNA assay (siEVP PRA) to simultaneously detect mRNAs, miRNAs, and proteins in subpopulations of EVs and LPs. The siEVP PRA immobilizes and sorts particles via positive immunoselection onto micropatterns and focuses biomolecular signals in situ. By detecting EVPs at a single-particle resolution, the siEVP PRA outperformed the sensitivities of bulk-analysis benchmark assays for RNA and protein. To assess the specificity of RNA detection in complex biofluids, EVs from various glioma cell lines were processed with small RNA sequencing, whereby two mRNAs and two miRNAs associated with glioblastoma multiforme (GBM) were chosen for cross-validation. Despite the presence of single-EV-LP co-isolates in serum, the siEVP PRA detected GBM-associated vesicular RNA profiles in GBM patient siEVPs. The siEVP PRA effectively examines intravesicular, intervesicular, and interparticle heterogeneity with diagnostic promise.


Assuntos
Vesículas Extracelulares , Glioblastoma , MicroRNAs , Humanos , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Lipopolissacarídeos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro , Lipoproteínas , Glioblastoma/diagnóstico , Glioblastoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA