Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Iran J Public Health ; 53(5): 1184-1191, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38912134

RESUMO

Background: Plectinopathy-associated disorders are caused by mutations in the PLECTIN (PLEC) gene encoding Plectin protein. PLEC mutations cause a spectrum of diseases defined by varying degrees of signs, mostly with epidermolysis bullosa simplex with muscular dystrophy (EBS-MD) and plectinopathy-related disorder is limb-girdle muscular dystrophy type 2Q (LGMD2Q). Here we report three cases with EBS-MD and LGMD2Q disorders analyzed by exome sequencing followed by mutation confirmation. Methods: A complete clinical examination was done by expert specialists and clinical geneticists in Next Generation Genetic polyclinic, Mashhad, Iran (NGC, years 2020_2021),. Genomic DNA was extracted and evaluated through whole-exome sequencing analysis followed by Sanger sequencing for co-segregation analysis of PLEC candidate variants. Results: We found three cases with the plectinopathy-related disease, two patients with limb-girdle muscular dystrophy type 2Q (LGMD2Q), and the other affected proband suffers from epidermolysis bullosa simplex combined with muscular dystrophy (EBS-MD) with variable zygosity mutations for PLEC. Motor development disorder and muscular dystrophy symptoms have different age onset in affected individuals. Patients with EBS demonstrated symptoms such as blistering, skin scars, neonatal-onset, and nail dystrophy. Conclusion: We report plectinopathy-associated disorders to expand clinical phenotypes in different types of PLEC-related diseases. We suppose to design more well-organized research based on comprehensive knowledge about the genetic basis of plectinopathy diseases.

2.
Adv Biomed Res ; 12: 150, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564451

RESUMO

Background: The phenotypic range of limb-girdle muscular dystrophies (LGMDs) varies significantly because of genetic heterogeneity ranging from very mild to severe forms. Molecular analysis of the DYSF gene is challenging due to the wide range of mutations and associated complications in interpretations of novel DYSF variants with uncertain significance. Thus, in the current study, we performed the NGS analysis and its results are confirmed with Sanger sequencing to find the plausible disease-causing variants in patients with muscular dystrophy and their relatives via segregation analysis. Materials and Methods: Nine patients with LGMD type 2B (LGMD2B) characteristics were screened for putative mutations by the whole-exome sequencing (WES) test. Either the patients themselves or their parents and first relatives were investigated in the segregation analysis through Sanger sequencing. The majority of variants were classified as pathogenic through American College of Medical Genetics and Genomics (ACMG) guidelines, segregation results, and in silico predictions. Results: Results revealed eight variants in DYSF gene, including three splicing (c.1149+4A>G, c.2864+1G>A, and c.5785-7G>A), two nonsense (p.Gln112Ter and p.Trp2084Ter), two missense (p.Thr1546Pro and p.Tyr1032Cys), and one frameshift (p.Asp1067Ilefs), among nine Iranian families. One of the eight identified variants was novel, including p.Asp1067Ilefs, which was predicted to be likely pathogenic based on the ACMG guidelines. Notably, prediction tools suggested the damaging effects of studied variants on dysferlin structure. Conclusion: Conclusively, the current report introduced eight variants including a novel frameshift in DYSF gene with noticeable pathogenic effects. This study significantly can broaden the diagnostic spectrum of LGMD2B in combination with previous reports about DYSF mutations and may pave the way for a rapidly high-ranked identification of the accurate type of dysferlinopathy.

3.
Mol Genet Genomic Med ; 11(6): e2153, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36794879

RESUMO

BACKGROUND: ECEL1 has been presented as a causal gene of an autosomal recessive form distal arthrogryposis (DA) which affects the distal joints. The present study focused on bioinformatic analysis of a novel mutation in ECEL1, c.535A>G (p. Lys179Glu), which was reported in a family with 2 affected boys and fetus through prenatal diagnosis. METHODS: Whole-exome sequencing data analyzed followed by molecular dynamic (MD) simulation of native ECEL1 protein and mutant structures using GROMACS software. One variant c.535A>G, p. Lys179Glu (homozygous) on gene ECEL1 has been detected in proband which was validated in all family members through Sanger sequencing. RESULTS: We demonstrated remarkable constructional differences by MD simulation between wild-type and novel mutant of ECEL1 gene. The reason for the lack of the Zn ion binding in mutation in the ECEL1 protein has been identified by average atomic distance and SMD analysis among the wild-type and mutant. CONCLUSION: Overall, in this study, we present knowledge of the effect of the studied variant on the ECEL1 protein leading to neurodegenerative disorder in humans. This work may hopefully be supplementary to classical molecular dynamics to dissolve the mutational effects of cofactor-dependent protein.


Assuntos
Artrogripose , Simulação de Dinâmica Molecular , Masculino , Humanos , Fenótipo , Artrogripose/genética , Consanguinidade , Mutação , Metaloendopeptidases/genética
4.
Brain ; 146(8): 3273-3288, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36757831

RESUMO

In the field of rare diseases, progress in molecular diagnostics led to the recognition that variants linked to autosomal-dominant neurodegenerative diseases of later onset can, in the context of biallelic inheritance, cause devastating neurodevelopmental disorders and infantile or childhood-onset neurodegeneration. TOR1A-associated arthrogryposis multiplex congenita 5 (AMC5) is a rare neurodevelopmental disorder arising from biallelic variants in TOR1A, a gene that in the heterozygous state is associated with torsion dystonia-1 (DYT1 or DYT-TOR1A), an early-onset dystonia with reduced penetrance. While 15 individuals with AMC5-TOR1A have been reported (less than 10 in detail), a systematic investigation of the full disease-associated spectrum has not been conducted. Here, we assess the clinical, radiological and molecular characteristics of 57 individuals from 40 families with biallelic variants in TOR1A. Median age at last follow-up was 3 years (0-24 years). Most individuals presented with severe congenital flexion contractures (95%) and variable developmental delay (79%). Motor symptoms were reported in 79% and included lower limb spasticity and pyramidal signs, as well as gait disturbances. Facial dysmorphism was an integral part of the phenotype, with key features being a broad/full nasal tip, narrowing of the forehead and full cheeks. Analysis of disease-associated manifestations delineated a phenotypic spectrum ranging from normal cognition and mild gait disturbance to congenital arthrogryposis, global developmental delay, intellectual disability, absent speech and inability to walk. In a subset, the presentation was consistent with foetal akinesia deformation sequence with severe intrauterine abnormalities. Survival was 71%, with higher mortality in males. Death occurred at a median age of 1.2 months (1 week-9 years), due to respiratory failure, cardiac arrest or sepsis. Analysis of brain MRI studies identified non-specific neuroimaging features, including a hypoplastic corpus callosum (72%), foci of signal abnormality in the subcortical and periventricular white matter (55%), diffuse white matter volume loss (45%), mega cisterna magna (36%) and arachnoid cysts (27%). The molecular spectrum included 22 distinct variants, defining a mutational hotspot in the C-terminal domain of the Torsin-1A protein. Genotype-phenotype analysis revealed an association of missense variants in the 3-helix bundle domain to an attenuated phenotype, while missense variants near the Walker A/B motif as well as biallelic truncating variants were linked to early death. In summary, this systematic cross-sectional analysis of a large cohort of individuals with biallelic TOR1A variants across a wide age-range delineates the clinical and genetic spectrum of TOR1A-related autosomal-recessive disease and highlights potential predictors for disease severity and survival.


Assuntos
Distonia , Distúrbios Distônicos , Malformações do Sistema Nervoso , Masculino , Humanos , Estudos Transversais , Mutação/genética , Fenótipo , Distonia/genética , Distúrbios Distônicos/genética , Chaperonas Moleculares/genética
5.
Orphanet J Rare Dis ; 17(1): 97, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241111

RESUMO

BACKGROUND: Stickler syndrome (STL) is a rare, clinically and molecularly heterogeneous connective tissue disorder. Pathogenic variants occurring in a variety of genes cause STL, mainly inherited in an autosomal dominant fashion. Autosomal recessive STL is ultra-rare with only four families with biallelic COL9A3 variants reported to date. RESULTS: Here, we report three unrelated families clinically diagnosed with STL carrying different novel biallelic loss of function variants in COL9A3. Further, we have collected COL9A3 genotype-phenotype associations from the literature. CONCLUSION: Our report substantially expands the molecular genetics and clinical basis of autosomal recessive STL and provides an overview about allelic COL9A3 disorders.


Assuntos
Artrite , Colágeno Tipo IX , Doenças do Tecido Conjuntivo , Perda Auditiva Neurossensorial , Osteocondrodisplasias , Descolamento Retiniano , Artrite/diagnóstico , Artrite/genética , Colágeno Tipo IX/genética , Doenças do Tecido Conjuntivo/genética , Doenças do Tecido Conjuntivo/patologia , Genes Recessivos/genética , Perda Auditiva Neurossensorial/genética , Humanos , Mutação/genética , Osteocondrodisplasias/genética , Linhagem , Fenótipo , Descolamento Retiniano/diagnóstico , Descolamento Retiniano/genética , Descolamento Retiniano/patologia
9.
Genet Med ; 23(10): 1873-1881, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34113002

RESUMO

PURPOSE: Phosphatidylinositol Glycan Anchor Biosynthesis, class G (PIGG) is an ethanolamine phosphate transferase catalyzing the modification of glycosylphosphatidylinositol (GPI). GPI serves as an anchor on the cell membrane for surface proteins called GPI-anchored proteins (GPI-APs). Pathogenic variants in genes involved in the biosynthesis of GPI cause inherited GPI deficiency (IGD), which still needs to be further characterized. METHODS: We describe 22 individuals from 19 unrelated families with biallelic variants in PIGG. We analyzed GPI-AP surface levels on granulocytes and fibroblasts for three and two individuals, respectively. We demonstrated enzymatic activity defects for PIGG variants in vitro in a PIGG/PIGO double knockout system. RESULTS: Phenotypic analysis of reported individuals reveals shared PIGG deficiency-associated features. All tested GPI-APs were unchanged on granulocytes whereas CD73 level in fibroblasts was decreased. In addition to classic IGD symptoms such as hypotonia, intellectual disability/developmental delay (ID/DD), and seizures, individuals with PIGG variants of null or severely decreased activity showed cerebellar atrophy, various neurological manifestations, and mitochondrial dysfunction, a feature increasingly recognized in IGDs. Individuals with mildly decreased activity showed autism spectrum disorder. CONCLUSION: This in vitro system is a useful method to validate the pathogenicity of variants in PIGG and to study PIGG physiological functions.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Humanos , Proteínas de Membrana , Linhagem , Convulsões , Virulência
10.
Brain ; 143(8): 2437-2453, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32761064

RESUMO

In pleiotropic diseases, multiple organ systems are affected causing a variety of clinical manifestations. Here, we report a pleiotropic disorder with a unique constellation of neurological, endocrine, exocrine, and haematological findings that is caused by biallelic MADD variants. MADD, the mitogen-activated protein kinase (MAPK) activating death domain protein, regulates various cellular functions, such as vesicle trafficking, activity of the Rab3 and Rab27 small GTPases, tumour necrosis factor-α (TNF-α)-induced signalling and prevention of cell death. Through national collaboration and GeneMatcher, we collected 23 patients with 21 different pathogenic MADD variants identified by next-generation sequencing. We clinically evaluated the series of patients and categorized the phenotypes in two groups. Group 1 consists of 14 patients with severe developmental delay, endo- and exocrine dysfunction, impairment of the sensory and autonomic nervous system, and haematological anomalies. The clinical course during the first years of life can be potentially fatal. The nine patients in Group 2 have a predominant neurological phenotype comprising mild-to-severe developmental delay, hypotonia, speech impairment, and seizures. Analysis of mRNA revealed multiple aberrant MADD transcripts in two patient-derived fibroblast cell lines. Relative quantification of MADD mRNA and protein in fibroblasts of five affected individuals showed a drastic reduction or loss of MADD. We conducted functional tests to determine the impact of the variants on different pathways. Treatment of patient-derived fibroblasts with TNF-α resulted in reduced phosphorylation of the extracellular signal-regulated kinases 1 and 2, enhanced activation of the pro-apoptotic enzymes caspase-3 and -7 and increased apoptosis compared to control cells. We analysed internalization of epidermal growth factor in patient cells and identified a defect in endocytosis of epidermal growth factor. We conclude that MADD deficiency underlies multiple cellular defects that can be attributed to alterations of TNF-α-dependent signalling pathways and defects in vesicular trafficking. Our data highlight the multifaceted role of MADD as a signalling molecule in different organs and reveal its physiological role in regulating the function of the sensory and autonomic nervous system and endo- and exocrine glands.


Assuntos
Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/genética , Deficiências do Desenvolvimento/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Doenças do Sistema Nervoso/genética , Humanos , Mutação , Fenótipo , Transporte Proteico/genética , Transdução de Sinais/genética
11.
Ann Med ; 52(8): 462-470, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32735150

RESUMO

Statins are the first-line choice in Lipid-lowering therapy to reduce cardiovascular risk. In a continuous attempt to optimise treatment success, there is a need for additional research on genes and related molecular pathways that can determine the efficacy and toxicity of lipid-lowering drugs. Several variations within genes associated with lipid metabolism, including those involved in uptake, distribution and metabolism of statins have been reported. The purpose of this study was to evaluate the effect of genetic variations in the key genes responsible for statins' metabolism and their role in personalised medicine and pharmacogenetic testing (PGx) in patients treated with such drugs. Genetic assessment for specific known SNPs within the most known genes such as ABCG2, SLCO1B1, CYP3A4, and HMGCR, appears likely to predict the efficacy of statin therapy and prevent their side effects but does not necessarily reduce the risk of cardiovascular events. Key Messages Hypercholesterolaemia patients show different response to statin therapy. Several variations within genes associated with statin metabolism have been investigated. Genetic assessment for specific known SNPs within the most known genes may improve the efficacy of statins treatment and prevent their side effects.


Assuntos
Doenças Cardiovasculares/epidemiologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Hipercolesterolemia/tratamento farmacológico , Testes Farmacogenômicos/métodos , Medicina de Precisão/métodos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/prevenção & controle , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Estudos de Viabilidade , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hipercolesterolemia/complicações , Hipercolesterolemia/genética , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Variantes Farmacogenômicos , Polimorfismo de Nucleotídeo Único , Prognóstico , Medição de Risco/métodos , Resultado do Tratamento
12.
Eur J Hum Genet ; 28(11): 1509-1519, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32572202

RESUMO

Major Facilitator Superfamily Domain containing 2a (MFSD2A) is an essential endothelial lipid transporter at the blood-brain barrier. Biallelic variants affecting function in MFSD2A cause autosomal recessive primary microcephaly 15 (MCPH15, OMIM# 616486). We sought to expand our knowledge of the phenotypic spectrum of MCPH15 and demonstrate the underlying mechanism of inactivation of the MFSD2A transporter. We carried out detailed analysis of the clinical and neuroradiological features of a series of 27 MCPH15 cases, including eight new individuals from seven unrelated families. Genetic investigation was performed through exome sequencing (ES). Structural insights on the human Mfsd2a model and in-vitro biochemical assays were used to investigate the functional impact of the identified variants. All patients had primary microcephaly and severe developmental delay. Brain MRI showed variable degrees of white matter reduction, ventricular enlargement, callosal hypodysgenesis, and pontine and vermian hypoplasia. ES led to the identification of six novel biallelic MFSD2A variants (NG_053084.1, NM_032793.5: c.556+1G>A, c.748G>T; p.(Val250Phe), c.750_753del; p.(Cys251SerfsTer3), c.977G>A; p.(Arg326His), c.1386_1435del; p.(Gln462HisfsTer17), and c.1478C>T; p.(Pro493Leu)) and two recurrent variants (NM_032793.5: c.593C>T; p.(Thr198Met) and c.476C>T; p.(Thr159Met)). All these variants and the previously reported NM_032793.5: c.490C>A; p.(Pro164Thr) resulted in either reduced MFSD2A expression and/or transport activity. Our study further delineates the phenotypic spectrum of MCPH15, refining its clinical and neuroradiological characterization and supporting that MFSD2A deficiency causes early prenatal brain developmental disruption. We also show that poor MFSD2A expression despite normal transporter activity is a relevant pathomechanism in MCPH15.


Assuntos
Agenesia do Corpo Caloso/genética , Deficiências do Desenvolvimento/genética , Microcefalia/genética , Mutação , Simportadores/genética , Adolescente , Adulto , Agenesia do Corpo Caloso/diagnóstico por imagem , Agenesia do Corpo Caloso/patologia , Criança , Pré-Escolar , Deficiências do Desenvolvimento/diagnóstico por imagem , Deficiências do Desenvolvimento/patologia , Feminino , Células HEK293 , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Microcefalia/diagnóstico por imagem , Microcefalia/patologia , Domínios Proteicos , Simportadores/química , Simportadores/metabolismo , Síndrome
13.
Genet Med ; 22(6): 1061-1068, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32099069

RESUMO

PURPOSE: TNR, encoding Tenascin-R, is an extracellular matrix glycoprotein involved in neurite outgrowth and neural cell adhesion, proliferation and migration, axonal guidance, myelination, and synaptic plasticity. Tenascin-R is exclusively expressed in the central nervous system with highest expression after birth. The protein is crucial in the formation of perineuronal nets that ensheath interneurons. However, the role of Tenascin-R in human pathology is largely unknown. We aimed to establish TNR as a human disease gene and unravel the associated clinical spectrum. METHODS: Exome sequencing and an online matchmaking tool were used to identify patients with biallelic variants in TNR. RESULTS: We identified 13 individuals from 8 unrelated families with biallelic variants in TNR sharing a phenotype consisting of spastic para- or tetraparesis, axial muscular hypotonia, developmental delay, and transient opisthotonus. Four homozygous loss-of-function and four different missense variants were identified. CONCLUSION: We establish TNR as a disease gene for an autosomal recessive nonprogressive neurodevelopmental disorder with spasticity and transient opisthotonus and highlight the role of central nervous system extracellular matrix proteins in the pathogenicity of spastic disorders.


Assuntos
Espasticidade Muscular , Transtornos do Neurodesenvolvimento , Sistema Nervoso Central , Matriz Extracelular , Homozigoto , Humanos , Espasticidade Muscular/genética , Transtornos do Neurodesenvolvimento/genética
14.
Acta Neuropathol ; 139(3): 415-442, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31820119

RESUMO

Developmental and/or epileptic encephalopathies (DEEs) are a group of devastating genetic disorders, resulting in early-onset, therapy-resistant seizures and developmental delay. Here we report on 22 individuals from 15 families presenting with a severe form of intractable epilepsy, severe developmental delay, progressive microcephaly, visual disturbance and similar minor dysmorphisms. Whole exome sequencing identified a recurrent, homozygous variant (chr2:64083454A > G) in the essential UDP-glucose pyrophosphorylase (UGP2) gene in all probands. This rare variant results in a tolerable Met12Val missense change of the longer UGP2 protein isoform but causes a disruption of the start codon of the shorter isoform, which is predominant in brain. We show that the absence of the shorter isoform leads to a reduction of functional UGP2 enzyme in neural stem cells, leading to altered glycogen metabolism, upregulated unfolded protein response and premature neuronal differentiation, as modeled during pluripotent stem cell differentiation in vitro. In contrast, the complete lack of all UGP2 isoforms leads to differentiation defects in multiple lineages in human cells. Reduced expression of Ugp2a/Ugp2b in vivo in zebrafish mimics visual disturbance and mutant animals show a behavioral phenotype. Our study identifies a recurrent start codon mutation in UGP2 as a cause of a novel autosomal recessive DEE syndrome. Importantly, it also shows that isoform-specific start-loss mutations causing expression loss of a tissue-relevant isoform of an essential protein can cause a genetic disease, even when an organism-wide protein absence is incompatible with life. We provide additional examples where a similar disease mechanism applies.


Assuntos
Encefalopatias/genética , Síndromes Epilépticas/genética , Genes Essenciais/genética , UTP-Glucose-1-Fosfato Uridililtransferase/genética , Animais , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Mutação , Linhagem , Peixe-Zebra
15.
Am J Hum Genet ; 105(6): 1126-1147, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31735293

RESUMO

The redox state of the neural progenitors regulates physiological processes such as neuronal differentiation and dendritic and axonal growth. The relevance of endoplasmic reticulum (ER)-associated oxidoreductases in these processes is largely unexplored. We describe a severe neurological disorder caused by bi-allelic loss-of-function variants in thioredoxin (TRX)-related transmembrane-2 (TMX2); these variants were detected by exome sequencing in 14 affected individuals from ten unrelated families presenting with congenital microcephaly, cortical polymicrogyria, and other migration disorders. TMX2 encodes one of the five TMX proteins of the protein disulfide isomerase family, hitherto not linked to human developmental brain disease. Our mechanistic studies on protein function show that TMX2 localizes to the ER mitochondria-associated membranes (MAMs), is involved in posttranslational modification and protein folding, and undergoes physical interaction with the MAM-associated and ER folding chaperone calnexin and ER calcium pump SERCA2. These interactions are functionally relevant because TMX2-deficient fibroblasts show decreased mitochondrial respiratory reserve capacity and compensatory increased glycolytic activity. Intriguingly, under basal conditions TMX2 occurs in both reduced and oxidized monomeric form, while it forms a stable dimer under treatment with hydrogen peroxide, recently recognized as a signaling molecule in neural morphogenesis and axonal pathfinding. Exogenous expression of the pathogenic TMX2 variants or of variants with an in vitro mutagenized TRX domain induces a constitutive TMX2 polymerization, mimicking an increased oxidative state. Altogether these data uncover TMX2 as a sensor in the MAM-regulated redox signaling pathway and identify it as a key adaptive regulator of neuronal proliferation, migration, and organization in the developing brain.


Assuntos
Encefalopatias/patologia , Encéfalo/anormalidades , Deficiências do Desenvolvimento/patologia , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Tiorredoxinas/metabolismo , Adolescente , Adulto , Encefalopatias/genética , Encefalopatias/metabolismo , Criança , Pré-Escolar , Estudos de Coortes , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Seguimentos , Humanos , Lactente , Recém-Nascido , Masculino , Proteínas de Membrana/genética , Mitocôndrias/patologia , Oxirredução , Prognóstico , Pele/metabolismo , Pele/patologia , Tiorredoxinas/genética , Transcriptoma
16.
Arch Gynecol Obstet ; 300(3): 777-782, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31317253

RESUMO

BACKGROUND: The relationship between thrombophilia genes and recurrent pregnancy loss has been discussed. The aim of this study was to investigate the association between of MTHFR C677T, A1298C, F2G20210A, and F5 G1691A genetic variants among Iranian women with recurrent miscarriage. METHODS: A total of 245 women with two or more recurrent pregnancy loss, with mean age years were enrolled in the study. To compare genotypes, we have selected 250 healthy women without history of miscarriage as control group. Genomic DNA of participants was evaluated using polymerase chain reaction followed by Sanger sequencing to determine the genotype frequency. RESULTS: The mean age were 32.16 ± (21-42) and 31.81 ± (19-40) for case and control groups respectively. MTHFR C677T and A1298C mutant alleles were found to be significantly more prevalent in patients than control. However, F2G20210A and F5 G1691A genetic variants showed no significance. CONCLUSION: The allele frequencies for the assessed genotypes in this study are consistent with the data obtained for other countries. We observed significant susceptible effects of MTHFR C677T, and A1298C among participants. According to the relatively high prevalence of these variants, we recommend genetic testing for women with RPL before therapeutic decisions.


Assuntos
Aborto Habitual/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Mutação/genética , Trombofilia/genética , Aborto Habitual/epidemiologia , Adulto , Alelos , Feminino , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Humanos , Irã (Geográfico) , Reação em Cadeia da Polimerase , Polimorfismo Genético , Gravidez , Trombofilia/complicações
17.
Iran J Basic Med Sci ; 22(3): 302-309, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31156792

RESUMO

OBJECTIVES: The results of studies on vaccine development for foot-and-mouth disease (FMD) virus show that the use of inactivated vaccines for FMD virus is not completely effective. Novel vaccinations based on immuno-dominant epitopes have been shown to induce immune responses. Furthermore, for safety of immunization, access to efficient adjuvants against FMD virus seems to be critical. MATERIALS AND METHODS: In this study, we produced epitope recombinant vaccines from the VP1 protein of the FMD virus for serotype O of Iran. Constructs were included polytope (tandem-repeat multiple-epitope), polytope coupled with interleukin-2 (polytope-IL 2) as a molecular adjuvant and IL-2. Three expression vectors were constructed and expressed in Escherichia coli BL21 (DE3). To evaluate whether these recombinant vaccines induce immune responses, BALB/c mice were injected with the recombinant vaccines and their immune responses were compared with a negative control group. The humoral and cellular immune responses were measured by ELISA. RESULTS: The results showed that IL-2 co-expressed or co-inoculated with Polytope protein enhances the immune effect of multiple epitope recombinant vaccine against FMD virus. The results of total immunoglobulin G (IgG), IgG1, and IgG2a levels and secretion of interferon gamma (IFN-γ), IL-4 and IL-10 revealed that there were significant differences between negative control group and other injected mice with the recombinant vaccines (P<0.05). CONCLUSION: Observations indicated that the epitope recombinant plasmid of the VP1 protein co-expressed or co-inoculated with IL-2 was effective in inducing an enhanced immune response. Therefore, IL-2 can be recommended as a potential adjuvant for epitope recombinant vaccine of the VP1 protein from FMD virus.

18.
Adv J Emerg Med ; 3(1): e2, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31172115

RESUMO

INTRODUCTION: Road traffic traumatic injuries are the leading cause of death especially among young men who are mostly vulnerable victims. This catastrophe is more complicated in low to middle-income countries. OBJECTIVE: This study assessed the financial costs of traffic casualties in a level-1 trauma university hospital. METHOD: One thousand trauma patients presenting to the emergency department of Shohaday-e-Tajrish Hospital were included in the study. The prehospital and hospital costs as well as the expenses of physiotherapy, rehabilitation, outpatient visits and further surgical interventions were considered as direct expenses. The costs of productivity loss were estimated as indirect expenses. RESULTS: The direct and indirect costs were assessed 27.4% and 72.6% of total, respectively. The mean age of permanent disability was 43 years old. The average expenses of temporary and permanent disabilities were 2934.4 million rials, equal to 106 thousand $ (nearly 4.2 million rials or 153 $ per patient) and 23.9 billion rials, equal to 866.3 thousand $ (1.1 billion rials or 39.2 thousand $ per person), respectively. CONCLUSION: The national burden of traffic injuries in Iran is significantly destructive as it consists of 2.19 % of Gross Domestic Product annually. Besides, young men are involved in most of the traffic accidents representing the need to establish rigorous preventive instructions and reduce human, and financial costs.

19.
Microb Pathog ; 132: 30-37, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31004723

RESUMO

Previous studies on vaccine development against foot-and-mouth disease (FMD) virus reported that application of the inactivated vaccines for FMD virus is not completely effective. Novel vaccinations based on immune-dominant epitopes showed they induced immune responses. In addition, for better and safer immunization, access to of efficient adjuvants against FMD virus seems to be critical. In this study, we produced epitope recombinant vaccines from the VP1 protein of the FMD virus for serotype O of Iran that conjugated with Fc Immunoglobulin (FcIgG) and Interleukin-2 (IL-2). Multiple-epitope constructs included Polytope, Polytope-IL2-FcIgG, Polytope-IL2, Polytope-FcIgG that cloned and expressed in E. coli BL21 (DE3). To evaluate whether these epitope recombinant vaccines induce immune responses, BALB/c mice were injected with the epitope recombinant vaccines and their immune responses were compared with a negative control group. The humoral and cellular immune responses were measured by ELISA. The results showed there were significant differences between the negative control group and other immunized mice with recombinant epitope proteins (p < 0.05). The results of total IgG, IgG1, IgG2a levels and secretion of IFN-γ, IL-4 and IL-10 revealed that immune responses were enhanced when the epitope recombinant vaccine of FMD virus coupled with IL-2 and FcIgG. Observations indicated that the epitope recombinant plasmid of the VP1 protein co-expressed with IL-2 and FcIgG was effective in inducing an enhanced immune response. Therefore, IL-2 and FcIgG could be recommended as a potential adjuvant for epitope recombinant vaccine of the VP1 protein from FMD virus.


Assuntos
Vírus da Febre Aftosa/imunologia , Febre Aftosa/imunologia , Imunização , Epitopos Imunodominantes/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , Interleucina-2/imunologia , Vacinas Sintéticas/imunologia , Vacinas Virais/imunologia , Adjuvantes Imunológicos , Animais , Anticorpos Antivirais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Modelos Animais de Doenças , Epitopos/genética , Epitopos/imunologia , Escherichia coli/genética , Feminino , Vírus da Febre Aftosa/genética , Imunidade Celular , Imunidade Humoral , Imunoglobulina G , Interferon gama , Interleucina-10 , Interleucina-2/genética , Interleucina-4 , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Vacinas Sintéticas/química , Vacinas Sintéticas/genética , Vacinas Virais/genética
20.
Hum Mol Genet ; 28(11): 1919-1929, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715372

RESUMO

Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disorder, yet the genetic cause of up to 50% of cases remains unknown. Here, we show that mutations in KLHL24 cause HCM in humans. Using genome-wide linkage analysis and exome sequencing, we identified homozygous mutations in KLHL24 in two consanguineous families with HCM. Of the 11 young affected adults identified, 3 died suddenly and 1 had a cardiac transplant due to heart failure. KLHL24 is a member of the Kelch-like protein family, which acts as substrate-specific adaptors to Cullin E3 ubiquitin ligases. Endomyocardial and skeletal muscle biopsies from affected individuals of both families demonstrated characteristic alterations, including accumulation of desmin intermediate filaments. Knock-down of the zebrafish homologue klhl24a results in heart defects similar to that described for other HCM-linked genes providing additional support for KLHL24 as a HCM-associated gene. Our findings reveal a crucial role for KLHL24 in cardiac development and function.


Assuntos
Arritmias Cardíacas/genética , Cardiomiopatia Hipertrófica/mortalidade , Insuficiência Cardíaca/genética , Proteínas Repressoras/genética , Adulto , Animais , Arritmias Cardíacas/mortalidade , Arritmias Cardíacas/fisiopatologia , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/patologia , Morte Súbita Cardíaca/patologia , Desmina/genética , Modelos Animais de Doenças , Feminino , Ligação Genética/genética , Insuficiência Cardíaca/mortalidade , Insuficiência Cardíaca/fisiopatologia , Homozigoto , Humanos , Masculino , Mutação , Linhagem , Fenótipo , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA