Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Food Microbiol ; 407: 110398, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-37714070

RESUMO

In the manufacture of rennet-coagulated cheese, autolysis is a rate-limiting step for ripening. Previously, a highly autolytic and thermotolerant Lactococcus lactis strain, RD07, was generated, which in preliminary laboratory cheese trials demonstrated great potential as a cheese ripening accelerant. RD07 is proteinase positive (Prt+) and capable of metabolizing citrate (Cit+). In this study, we obtained two derivatives of RD07: EC8 lacking the citrate plasmid, and EC2 lacking the proteinase plasmid. EC2 and EC8 retained the autolytic properties of RD07, and autolyzed 20 times faster than Flora Danica (FD) and SD96, where the latter is the parent of RD07. The three strains EC2, EC8 and RD07 were used in a ratio of 90:8:2, to create a simple starter termed ERC. ERC was less sensitive to cooking when cultured in milk and autolyzed well after entering the stationary phase upon facing sugar starvation. The ERC starter was benchmarked against FD and SD96 in laboratory cheese trials. The free amino acid content in cheese prepared using the ERC culture was 31 % and 34 % higher than in cheese prepared using FD and SD96, respectively. Overall, the ERC culture resulted in a more rapid release of free amino acids. A large-scale (5000 L) Gouda cheese trial at a Danish dairy demonstrated that the single strain ERC starter was comparable in performance to FD + an adjunct Lactobacillus helveticus culture. Furthermore, a large-scale Danbo cheese trial demonstrated that ERC could reduce the ripening period by 50 % for long-term ripened (25 weeks) cheese, resulting in better cheese.


Assuntos
Queijo , Lactococcus lactis , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Peptídeo Hidrolases/metabolismo , Citratos/metabolismo
2.
Appl Environ Microbiol ; 87(21): e0103521, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34406823

RESUMO

Lactococcus lactis subsp. lactis (referred to here as L. lactis) is a model lactic acid bacterium and one of the main constituents of the mesophilic cheese starter used for producing soft or semihard cheeses. Most dairy L. lactis strains grow optimally at around 30°C and are not particularly well adapted to the elevated temperatures (37 to 39°C) to which they are often exposed during cheese production. To overcome this challenge, we used adaptive laboratory evolution (ALE) in milk, using a setup where the temperature was gradually increased over time, and isolated two evolved strains (RD01 and RD07) better able to tolerate high growth temperatures. One of these, strain RD07, was isolated after 1.5 years of evolution (400 generations) and efficiently acidified milk at 41°C, which has not been reported for industrial L. lactis strains until now. Moreover, RD07 appeared to autolyze 2 to 3 times faster than its parent strain, which is another highly desired property of dairy lactococci and rarely observed in the L. lactis subspecies used in this study. Model cheese trials indicated that RD07 could potentially accelerate cheese ripening. Transcriptomics analysis revealed the potential underlying causes responsible for the enhanced growth at high temperatures for the mutants. These included downregulation of the pleiotropic transcription factor CodY and overexpression of genes, which most likely lowered the guanidine nucleotide pool. Cheese trials at ARLA Foods using RD01 blended with the commercial Flora Danica starter culture, including a 39.5°C cooking step, revealed better acidification and flavor formation than the pure starter culture. IMPORTANCE In commercial mesophilic starter cultures, L. lactis is generally more thermotolerant than Lactococcus cremoris, whereas L. cremoris is more prone to autolysis, which is the key to flavor and aroma formation. In this study, we found that adaptation to higher thermotolerance can improve autolysis. Using whole-genome sequencing and RNA sequencing, we attempt to determine the underlying reason for the observed behavior. In terms of dairy applications, there are obvious advantages associated with using L. lactis strains with high thermotolerance, as these are less affected by curd cooking, which generally hampers the performance of the mesophilic starter. Cheese ripening, the costliest part of cheese manufacturing, can be reduced using autolytic strains. Thus, the solution presented here could simplify starter cultures, make the cheese manufacturing process more efficient, and enable novel types of harder cheese variants.


Assuntos
Queijo/microbiologia , Evolução Molecular Direcionada , Lactococcus lactis , Termotolerância , Microbiologia de Alimentos , Lactococcus lactis/genética
3.
Appl Microbiol Biotechnol ; 105(12): 4943-4955, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34115184

RESUMO

Lactose-free dairy products are in great demand worldwide due to the high prevalence of lactose intolerance. To make lactose-free dairy products, commercially available ß-galactosidase enzymes, also termed lactases, are used to break down lactose to its constituent monosaccharides, glucose and galactose. In this mini-review, the characteristics of lactase enzymes, their origin, and ways of use are discussed in light of their potential for hydrolyzing lactose. We also discuss whole-cell lactase catalysts, which appear to have great potential in terms of cost reduction and convenience, and which are more natural alternatives to purified enzymes. Lactic acid bacteria (LAB) already used in food fermentations seem to be optimal candidates for whole-cell lactases. However, they have not been industrially exploited yet due to technical hurdles. For whole-cell lactases to be efficient, the lactase enzymes inside the cells must be made available for lactose hydrolysis, and thus, cells need to be permeabilized or disrupted prior to use. Here we review state-of-the-art approaches for disrupting or permeabilizing microorganisms. Lastly, based on recent scientific achievements, we propose a novel, resource-efficient, and low-cost scenario for achieving lactose hydrolysis at a dairy plant using a LAB whole-cell lactase.Key points• Lactases (ß-galactosidase) are essential for producing lactose-free dairy products• Novel permeabilization techniques facilitate the use of LAB lactases• Whole-cell lactase catalysts have great potential for reducing costs and resources Graphical abstract.


Assuntos
Lactobacillales , Intolerância à Lactose , Animais , Humanos , Lactase , Lactose , Leite , beta-Galactosidase
4.
J Agric Food Chem ; 69(9): 2826-2835, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33646779

RESUMO

Nisin is commonly used as a biopreservative in foods. For industrial production, nisin-producing Lactococcus lactis strains are usually grown to high cell densities to achieve the highest possible nisin titer. However, accumulation of lactic acid eventually halts production, even in pH-controlled fermentations. Here, we describe a nisin-producing L. lactis strain Ge001, which was obtained after transferring the nisin gene cluster from L. lactis ATCC 11454, by conjugation, into the natural mutant L. lactis RD1M5, with low lactate dehydrogenase activity. The ability of Ge001 to produce nisin was tested using dairy waste as the fermentation substrate. To accommodate redox cofactor regeneration, respiration conditions were used, and to alleviate oxidative stress and to reduce adsorption of nisin onto the producing cells, we found it to be beneficial to add 1 mM Mn2+ and 100 mM Ca2+, respectively. A high titer of 12 084 IU/mL nisin could be reached, which is comparable to the highest titers reported using expensive, rich media. Summing up, we here present a 100% natural, robust, and sustainable approach for producing food-grade nisin and acetoin from readily available dairy waste.


Assuntos
Indústria de Laticínios , Lactococcus lactis , Nisina/biossíntese , Fermentação , Lactato Desidrogenases , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Oxirredução
5.
J Agric Food Chem ; 68(21): 5891-5899, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32363876

RESUMO

Lactococcus lactis subsp. lactis biovar diacetylactis is widely used in dairy fermentations as it can form the butter aroma compounds acetoin and diacetyl from citrate in milk. Here, we explore the possibility of producing acetoin from the more abundant lactose. Starting from a dairy isolate of L. lactis biovar diacetylactis, we obtained a series of mutants with low lactate dehydrogenase (ldh) activity. One isolate, RD1M5, only had a single insertion mutation in the ldh gene compared to its parental strain as revealed by whole genome resequencing. We tested the ability of RD1M5 to produce acetoin in milk. With aeration, all the lactose could be consumed, and the only product was acetoin. In a simulated cheese fermentation, a 50% increase in acetoin concentration could be achieved. RD1M5 turned out to be an excellent cell factory for acetoin and was able to convert lactose in dairy waste into acetoin with high titer (41 g/L) and high yield (above 90% of the theoretical yield). Summing up, RD1M5 was found to be highly robust and to grow excellently in milk or dairy waste. Being natural in origin opens up for applications within dairies as well as for safe production of food-grade acetoin from low-cost substrates.


Assuntos
Acetoína/metabolismo , Laticínios/microbiologia , Aromatizantes/metabolismo , Lactococcus lactis/metabolismo , Acetoína/análise , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bovinos , Queijo/análise , Queijo/microbiologia , Genoma Bacteriano , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/isolamento & purificação , Lactose/metabolismo , Leite/química , Leite/metabolismo , Leite/microbiologia
6.
Microbiol Resour Announc ; 9(3)2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31948956

RESUMO

The genome of Lactococcus lactis subsp. lactis bv. diacetylactis SD96, a strain used for cheese production, is presented. SD96 is refractory to phage attack, which is a desired property for starter bacteria. Its 10 plasmids provide industrially important traits, such as lactose and citrate metabolism, proteolytic activity, and phage resistance.

7.
Microb Cell Fact ; 18(1): 217, 2019 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-31884954

RESUMO

BACKGROUND: Diacetyl provides the buttery aroma in products such as butter and margarine. It can be made via a harsh set of chemical reactions from sugarcane bagasse, however, in dairy products it is normally formed spontaneously from α-acetolactate, a compound generated by selected lactic acid bacteria in the starter culture used. Due to its bacteriostatic properties, it is difficult to achieve high levels of diacetyl by fermentation. Here we present a novel strategy for producing diacetyl based on whole-cell catalysis, which bypasses the toxic effects of diacetyl. RESULTS: By expressing a robust α-acetolactate synthase (ALS) in a metabolically optimized Lactococcus lactis strain we obtained a whole-cell biocatalyst that efficiently converted pyruvate into α-acetolactate. After process optimization, we achieved a titer for α-acetolactate of 172 ± 2 mM. Subsequently we used a two-stage production setup, where pyruvate was produced by an engineered L. lactis strain and subsequently used as the substrate for the biocatalyst. Using this approach, 122 ± 5 mM and 113 ± 3 mM α-acetolactate could be made from glucose or lactose in dairy waste, respectively. The whole-cell biocatalyst was robust and fully active in crude fermentation broth containing pyruvate. CONCLUSIONS: An efficient approach for converting sugar into α-acetolactate, via pyruvate, was developed and tested successfully. Due to the anaerobic conditions used for the biotransformation, little diacetyl was generated, and this allowed for efficient biotransformation of pyruvate into α-acetolactate, with the highest titers reported to date. The use of a two-step procedure for producing α-acetolactate, where non-toxic pyruvate first is formed, and subsequently converted into α-acetolactate, also simplified the process optimization. We conclude that whole cell catalysis is suitable for converting lactose in dairy waste into α-acetolactate, which favors resource utilization.


Assuntos
Lactatos/metabolismo , Lactococcus lactis/metabolismo , Ácido Pirúvico/metabolismo , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Laticínios/análise , Fermentação , Glucose/metabolismo , Lactococcus lactis/genética , Lactose/metabolismo , Resíduos
8.
Chembiochem ; 19(4): 338-346, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29105250

RESUMO

Generally, the catalytic activity of subtilisin Carlsberg (SC) for transacylation reactions with secondary alcohols in organic solvent is low. Enzyme immobilization and protein engineering was performed to improve the enantioselectivity of SC towards secondary alcohols. Possible amino-acid residues for mutagenesis were found by combining available literature data with molecular modeling. SC variants were created by site-directed mutagenesis and were evaluated for a model transacylation reaction containing 1-phenylethanol in THF. Variants showing high E values (>100) were found. However, the conversions were still low. A second mutation was made, and both the E values and conversions were increased. Relative to that shown by the wild type, the most successful variant, G165L/M221F, showed increased conversion (up to 36 %), enantioselectivity (E values up to 400), substrate scope, and stability in THF.


Assuntos
Álcoois/química , Álcoois/metabolismo , Bacillus/enzimologia , Enzimas Imobilizadas/metabolismo , Engenharia de Proteínas , Subtilisinas/metabolismo , Biocatálise , Enzimas Imobilizadas/química , Enzimas Imobilizadas/genética , Variação Genética/genética , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo , Subtilisinas/química , Subtilisinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA